News Tips from ACS NANO DOE Research News Site

EurekAlert!, a service of AAAS
Home About us
Advanced Search
29-Nov-2015 09:11
US Eastern Time




Forgot Password?

Press Releases

Breaking News

Science Business

Grants, Awards, Books



Science Agencies
on EurekAlert!

US Department of Energy

US National Institutes of Health

US National Science Foundation


Submit a Calendar Item


Links & Resources


RSS Feeds

Accessibility Option On


Portal Home


Background Articles

Research Papers


Links & Resources


Online Chats

RSS Feed


News Releases

Key: Meeting M      Journal J      Funder F

Showing releases 1526-1550 out of 1802.

<< < 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 > >>

Public Release: 27-Mar-2014
Angewandte Chemie International Edition
Scientists watch nanoparticles grow
With DESY's X-ray light source PETRA III, Danish scientists observed the growth of nanoparticles live. The study shows how tungsten oxide nanoparticles are forming from solution. These particles are used for example for smart windows, which become opaque at the flick of a switch, and they are also used in particular solar cells. The team around lead author Dr. Dipankar Saha from Århus University present their observations in the scientific journal Angewandte Chemie - International Edition.

Contact: Dr. Thomas Zoufal
Deutsches Elektronen-Synchrotron DESY

Public Release: 27-Mar-2014
Materials Today
Computing with slime
A future computer might be a lot slimier than the solid silicon devices we have today. In a study published in the journal Materials Today, European researchers reveal details of logic units built using living slime molds, which might act as the building blocks for computing devices and sensors.

Contact: Stewart Bland

Public Release: 26-Mar-2014
Agewandte Chemie
Scientists track 3-D nanoscale changes in rechargeable battery material during operation
Scientists at Brookhaven Lab have made the first 3-D observations of how the structure of a lithium-ion battery anode evolves at the nanoscale in a real battery cell as it discharges and recharges. The details of this research could point to new ways to engineer battery materials to increase the capacity and lifetime of rechargeable batteries.
DOE/Brookhaven National Laboratory Directed Research and Development Program

Contact: Karen McNulty Walsh
DOE/Brookhaven National Laboratory

Public Release: 26-Mar-2014
Book: 'Frontiers in Electronics: Advanced Modeling of Nanoscale Electron Devices'
This book consists of four chapters to address different modeling levels for different nanoscale MOS structures.

Contact: Jason Lim
65-646-65775 x247
World Scientific

Public Release: 25-Mar-2014
Angewandte Chemie
Nanotube coating helps shrink mass spectrometers
Nanotechnology is advancing tools that perform on-the-spot chemical analysis for a range of applications including medical testing, explosives detection and food safety. When paper used to collect a sample was coated with carbon nanotubes, the voltage required was 1,000 times reduced, the signal was sharpened and the equipment was able to capture far more delicate molecules. The research is detailed in a designated 'very important paper' by the journal Angewandte Chemie.
National Science Foundation, Nano Mission of the Government of India

Contact: Elizabeth K. Gardner
Purdue University

Public Release: 25-Mar-2014
Lab on a Chip
ISU engineer builds instrument to study effects of genes, environment on plant traits
Iowa State University's Liang Dong is leading a research team that's developing an accessible instrument with the scale, flexibility and resolution needed to study how genes and environmental conditions affect plant traits. The project is supported by a three-year, $697,550 grant from the National Science Foundation.
National Science Foundation

Contact: Liang Dong
Iowa State University

Public Release: 25-Mar-2014
Journal of Micro/Nanolithography, MEMS, and MOEMS
Micro systems with big commercial potential featured in SPIE journal
Micro-opto-electro-mechanical systems technologies with a wide range of applications in areas such as robotics, remote chemical detection, space exploration, bioimaging for clinical use, 3D imaging, and telecommunications are highlighted in a special section of the Journal of Micro/Nanolithography, MEMS, and MOEMS. The special section appears in the current issue of the journal, which is published by SPIE, the international society for optics and photonics.

Contact: Amy Nelson
SPIE--International Society for Optics and Photonics

Public Release: 24-Mar-2014
Scientific Reports
New technique sheds light on human neural networks
A new technique, developed by researchers in the Quantitative Light Imaging Laboratory at the Beckman Institute at the University of Illinois, provides a method to noninvasively measure human neural networks in order to characterize how they form.
National Science Foundation

Contact: Maeve Reilly
Beckman Institute for Advanced Science and Technology

Public Release: 24-Mar-2014
Advanced Functional Materials
Hot nanoparticles for cancer treatments
Nanoparticles have a great deal of potential in medicine: for diagnostics, as a vehicle for active substances or a tool to kill off tumours using heat. ETH Zurich researchers have now developed particles that are relatively easy to produce and have a wide range of applications.

Contact: Georgios Sotiriou
ETH Zurich

Public Release: 24-Mar-2014
Nanomaterials and Nanotechnology
Researchers grow carbon nanofibers using ambient air, without toxic ammonia
Materials science researchers have demonstrated that vertically aligned carbon nanofibers can be manufactured using ambient air, making the manufacturing process safer and less expensive. Vertically aligned carbon nanofibers hold promise for use in gene-delivery tools, sensors, batteries and other technologies.
National Science Foundation

Contact: Matt Shipman
North Carolina State University

Public Release: 23-Mar-2014
Nature Nanotechnology
Unavoidable disorder used to build nanolaser
World around researchers are working to develop nano-optical chips, where light can be controlled. These could be used for future circuits based on light (photons) instead of electrons -- that is photonics instead of electronics. But it has proved to be impossible to achieve perfect photonic nanostructures. Now researchers at the Niels Bohr Institute have shown that imperfect optical chips can be used to produce 'nanolasers,' which is an ultimately compact and energy-efficient light source.

Contact: Gertie Skaarup
University of Copenhagen - Niels Bohr Institute

Public Release: 21-Mar-2014
Proceedings of the National Academy of Sciences
Lightweight construction materials of highest stability thanks to their microarchitecture
KIT researchers have developed microstructured lightweight construction materials of highest stability. Although their density is below that of water, their stability relative to their weight exceeds that of massive materials, such as high-performance steel or aluminum. The lightweight construction materials are inspired by the framework structure of bones and the shell structure of the bees' honeycombs. The results are now presented in the journal PNAS.

Contact: Monika Landgraf
Helmholtz Association

Public Release: 21-Mar-2014
Making synthetic diamond crystals in a plasma reactor
Synthetic diamond crystals are of interest to many industrial sectors. Their unique properties make them a suitable material for numerous applications including lenses for high-energy laser optics, X-ray radiation detectors and ophthalmological scalpels. Fraunhofer scientists produce artificial diamonds in all shapes and sizes ranging from discs to three-dimensional shapes and even hollow spheres.

Contact: Nicola Heidrich

Public Release: 21-Mar-2014
Angewandte Chemie
Switching an antibiotic on and off with light
Scientists of the KIT and the University of Kiev have produced an antibiotic, whose biological activity can be controlled with light. Thanks to the robust diarylethene photoswitch, the antimicrobial effect of the peptide mimetic can be applied in a spatially and temporally specific manner. This might open up new options for the treatment of local infections, as side effects are reduced. The researchers present their photoactivable antibiotic with the new photomodule in a 'Very Important Paper' of the journal Angewandte Chemie.

Contact: Monika Landgraf
Karlsruher Institut für Technologie (KIT)

Public Release: 20-Mar-2014
Cell Reports
Surprising new way to kill cancer cells
Scientists have demonstrated that cancer cells -- and not normal cells -- can be killed by eliminating either the FAS receptor, also known as CD95, or its binding component, CD95 ligand. The discovery seems counterintuitive because CD95 has previously been defined as a tumor suppressor, scientists said.
NIH/National Cancer Institute

Contact: Marla Paul
Northwestern University

Public Release: 20-Mar-2014
The amazing anatomy of James Webb Space Telescope mirrors
When you think of a mirror, there really isn't that much needed to describe it, but when you look at a mirror that will fly aboard NASA's next-generation James Webb Space Telescope, there's a lot to the anatomy of a mirror.
NASA, European Space Agency, Canadian Space Agency

Contact: Lynn Chandler
NASA/Goddard Space Flight Center

Public Release: 20-Mar-2014
Nature Communications
New semiconductor holds promise for 2-D physics and electronics
Researchers at Berkeley Lab's Molecular Foundry have discovered a unique new semiconductor, rhenium disulfide, that behaves electronically as if it were a 2-D monolayer even as a 3-D bulk material. This not only opens the door to 2-D electronic applications with a 3D material, it also makes it possible to study 2-D physics with easy-to-make 3-D crystals.
US Department of Energy Office of Science

Contact: Lynn Yarris
DOE/Lawrence Berkeley National Laboratory

Public Release: 20-Mar-2014
Anti-counterfeit 'fingerprints' made from silver nanowires
Unique patterns made from tiny, randomly scattered silver nanowires have been created by a group of researchers from South Korea in an attempt to authenticate goods and tackle the growing problem of counterfeiting.

Contact: Michael Bishop
Institute of Physics

Public Release: 19-Mar-2014
IEEE Electron Device Letters
Tiny transistors for extreme environs
University of Utah electrical engineers fabricated the smallest plasma transistors that can withstand high temperatures and ionizing radiation found in a nuclear reactor. Such transistors someday might enable smartphones that take and collect medical X-rays on a battlefield, and devices to measure air quality in real time.
Defense Advanced Research Projects Agency

Contact: Aditi Risbud
University of Utah

Public Release: 18-Mar-2014
Physical Review B
Scientists open a new window into quantum physics with superconductivity in LEDs
A team of University of Toronto physicists led by Alex Hayat has proposed a novel and efficient way to leverage the strange quantum physics phenomenon known as entanglement. The approach would involve combining light-emitting diodes with a superconductor to generate entangled photons and could open up a rich spectrum of new physics as well as devices for quantum technologies, including quantum computers and quantum communication.

Contact: Kim Luke
University of Toronto

Public Release: 18-Mar-2014
Biophysical Journal
Nanopores control the inner ear's ability to select sounds
The inner-ear membrane uses tiny pores to mechanically separate sounds, researchers find.
National Institutes of Health, National Science Foundation, Wellcome Trust

Contact: Abby Abazorius
Massachusetts Institute of Technology

Public Release: 18-Mar-2014
Hannover Messe 2014
Getting rid of bad vibrations
Scanning electron microscopes are extremely sensitive, and even subtle movements going on around them can affect their accuracy. Vibration control tables already exist to dampen these sometimes barely perceptible disturbances. But now a new kind of isolation platform for the first time integrates sensors and actuators into the mount -- resulting in a platform that is more cost-effective and compact than its predecessors. Its designers will be showcasing this new form of isolation at the Hannover Messe (Hall 2, Booth D13) from April 7-11.

Contact: Torsten Bartel

Public Release: 18-Mar-2014
ACS Applied Materials & Interfaces
Researchers devise new, stretchable antenna for wearable health monitoring
Engineering researchers have developed a new, stretchable antenna that can be incorporated into wearable technologies, such as health monitoring devices.
National Science Foundation

Contact: Matt Shipman
North Carolina State University

Public Release: 18-Mar-2014
Advanced Materials
Nanotube composites increase the efficiency of next generation of solar cells
Carbon nanotubes are becoming increasingly attractive for photovoltaic solar cells as a replacement to silicon. Researchers at Umea University in Sweden have discovered that controlled placement of the carbon nanotubes into nano-structures produces a huge boost in electronic performance. Their groundbreaking results are published in the prestigious journal Advanced Materials.
Baltic Foundation andBaltic Foundation, Kempe Foundation Kempe Foundation

Contact: David Barbero
Umea University

Public Release: 18-Mar-2014
Nano Letters
Antimony nanocrystals for batteries
Researchers from ETH Zurich and Empa have succeeded for the first time to produce uniform antimony nanocrystals. Tested as components of laboratory batteries, these are able to store a large number of both lithium and sodium ions. These nanomaterials operate with high rate and may eventually be used as alternative anode materials in future high-energy-density batteries.

Contact: Maksym Kovalenko
ETH Zurich

Showing releases 1526-1550 out of 1802.

<< < 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 > >>