News Tips from ACS NANO DOE Research News Site

EurekAlert!, a service of AAAS
Home About us
Advanced Search
19-Apr-2015 08:41
US Eastern Time




Forgot Password?

Press Releases

Breaking News

Science Business

Grants, Awards, Books



Science Agencies
on EurekAlert!

US Department of Energy

US National Institutes of Health

US National Science Foundation


Submit a Calendar Item


Links & Resources


RSS Feeds

Accessibility Option On


Portal Home


Background Articles

Research Papers


Links & Resources


Online Chats

RSS Feed


News Releases

Key: Meeting M      Journal J      Funder F

Showing releases 1551-1575 out of 1765.

<< < 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 > >>

Public Release: 18-Jul-2013
Nano Letters
Stanford scientists break record for thinnest light-absorber
Stanford scientists have built the thinnest, most efficient absorber of visible light on record, a nanosize structure that could lead to less-costly, more efficient, solar cells.
US Department of Energy/Center on Nanostructuring for Efficient Energy Conversion, Marcus & Amalia Wallenberg Foundation

Contact: Mark Shwartz
Stanford University

Public Release: 18-Jul-2013
Soft Matter
Milikelvins drive droplet evaporation
Evaporation is so common that everybody thinks it's a well understood phenomenon. Appearances can be, however, deceptive. Recently, a new, earlier not predicted mechanism of evaporation was discovered. Experiments and simulations performed at the Institute of Physical Chemistry of the Polish Academy of Sciences and the Institute of Physics of the PAS not only confirm its existence, but also indicate that it plays the crucial role in evaporation process in the nanoscale.
Polish Ministry of Science and Higher Education

Contact: Robert Hołyst
Institute of Physical Chemistry of the Polish Academy of Sciences

Public Release: 18-Jul-2013
Penn researchers help show new way to study and improve catalytic reactions
A study by researchers at the University of Pennsylvania, the University of Trieste and Brookhaven National Laboratory has shown a way to precisely design the active elements of a certain class of catalysts, showing which parameters are most critical for improving performance. This highly controlled process could be a new paradigm for fine-tuning catalysts used in everything from making new materials to environmental remediation.
COST, US Department of Energy, National Science Foundation, Air Force Office of Scientific Research

Contact: Evan Lerner
University of Pennsylvania

Public Release: 18-Jul-2013
Another beautiful helix for biology, this time reminiscent of a parking garage
The endoplasmic reticulum is the protein-making factory within cells consisting of tightly stacked sheets of membrane studded with the molecules that make proteins. Now, researchers have refined a new microscopy imaging method to visualize exactly how the ER sheets are stacked, revealing that the 3D structure of the sheets resembles a parking garage. This structure allows for the dense packing of ER sheets, maximizing the amount of space available for protein synthesis.

Contact: Mary Beth O'Leary
Cell Press

Public Release: 17-Jul-2013
NASA engineer achieves another milestone in emerging nanotechnology
A NASA engineer has achieved yet another milestone in his quest to advance an emerging super-black nanotechnology that promises to make spacecraft instruments more sensitive without enlarging their size.

Contact: Lori Keesey
NASA/Goddard Space Flight Center

Public Release: 17-Jul-2013
Proceedings of the Royal Society A
Ironing out the origins of wrinkles, creases and folds
Engineers from Brown University have mapped out the amounts of compression required to cause wrinkles, creases, and folds to form in rubbery materials. The findings could help engineers control the formation of these structures, which can be useful in designing nanostructured materials for flexible electronic devices or surfaces that require variable adhesion.
National Science Foundation, Korea Institute of Machinery and Materials

Contact: Kevin Stacey
Brown University

Public Release: 17-Jul-2013
Molecular Therapy
Nano drug crosses blood-brain tumor barrier, targets brain-tumor cells and blood vessels
The blood-brain barrier protects the brain from poisons but also prevents drugs from reaching brain tumors. A preclinical study shows that an experimental nanotechnology drug called SapC-DOPS crosses the tumor blood-brain barrier, targets brain-tumor cells and retards growth of tumor blood vessels. The findings also show why the agent targets tumor cells and recommend the drug's further development as a novel treatment for glioblastoma.
NIH/National Cancer Institute, New Drug State Key Project

Contact: Darrell E. Ward
Ohio State University Wexner Medical Center

Public Release: 17-Jul-2013
Journal of Materials Chemistry B
A heart of gold
Dr. Tal Dvir of Tel Aviv University has integrated cardiac cells with nanofibers made of real gold particles to create functional engineered cardiac tissues. With the gold particles, these tissues contract much faster and stronger as a whole, he reports, making them more viable for transplants and post-heart-attack therapies.

Contact: George Hunka
American Friends of Tel Aviv University

Public Release: 17-Jul-2013
Impossible material made by Uppsala University researchers
A novel material with world record breaking surface area and water adsorption abilities has been synthesized by researchers from Uppsala University, Sweden. The results are published today in PLOS ONE.

Contact: Maria Strømme
Uppsala University

Public Release: 17-Jul-2013
Optical Materials Express
Deciphering butterflies' designer colors: Findings could inspire new hue-changing materials
A team of researchers in Hong Kong has uncovered how subtle differences in the tiny crystals of butterfly wings create stunningly varied patterns of color even among closely related species. The discovery, reported today in the Optical Society's open-access journal Optical Materials Express, could lead to new coatings for manufactured materials that could change color by design, if researchers can figure out how to replicate the wings' light-manipulating properties.

Contact: Angela Stark
The Optical Society

Public Release: 16-Jul-2013
Proceedings of the National Academy of Sciences
Researchers step closer to custom-building new blood vessels
Researchers at Johns Hopkins have coaxed stem cells into forming networks of new blood vessels in the laboratory, then successfully transplanted them into mice. The stem cells are made by reprogramming ordinary cells, so the new technique could potentially be used to make blood vessels genetically matched to individual patients and unlikely to be rejected by their immune systems, the investigators say.
American Heart Association, NIH/National Heart, Lung, and Blood Institute, NIH/National Cancer Institute, National Science Foundation

Contact: Shawna Williams
Johns Hopkins Medicine

Public Release: 16-Jul-2013
Chemistry: a European Journal
Using pressure to swell pores, not crush them
High pressure doesn't crush zeolites -- it actually makes interior nanopores expand. Researchers show how "super-hydration" inserts more water molecules into the cavities than can fit under ambient conditions.

Contact: Steven Powell
University of South Carolina

Public Release: 16-Jul-2013
Steering stem cells with magnets
By feeding stem cells tiny particles made of magnetized iron oxide, scientists can then use magnets to attract the cells to a particular location in the body.
NIH/National Heart Lung and Blood Institute

Contact: Quinn Eastman
Emory Health Sciences

Public Release: 16-Jul-2013
Nano Letters
New nanoscale imaging method finds application in plasmonics
Researchers from NIST and the University of Maryland have shown how to make nanoscale measurements of critical properties of plasmonic nanomaterials, the specially engineered nanostructures that modify the interaction of light and matter for a variety of applications including sensors, cloaking (invisibility), photovoltaics and therapeutics.

Contact: Mark Esser
National Institute of Standards and Technology (NIST)

Public Release: 16-Jul-2013
ACS Nano
Broadband photodetector for polarized light
Using carpets of aligned carbon nanotubes, researchers from Rice University and Sandia National Laboratories have created a solid-state electronic device that is hardwired to detect polarized light across a broad swath of the visible and infrared spectrum.
Lockheed Martin, National Science Foundation, US Department of Energy, Welch Foundation

Contact: Jade Boyd
Rice University

Public Release: 16-Jul-2013
Nano Letters
Artificial organelles transform free radicals into water and oxygen
Researchers at the University of Basel have successfully developed artificial organelles that are able to support the reduction of toxic oxygen compounds. This opens up new ways in the development of novel drugs that can influence pathological states directly inside the cell. The results have been published in the Journal "Nano Letters".

Contact: Reto Caluori
University of Basel

Public Release: 15-Jul-2013
Air Force support for a new generation of lithium-ion batteries
Four years ago, a Rice University research team demonstrated that they could chemically unzip cylindrical shaped carbon nanotubes into soluble graphene nanoribbons (GNR) without compromising the electronic properties of the graphitic structure. A recent paper by the team, published in IEEE Spectrum and partially funded by AFOSR, showed that GNR can significantly increase the storage capacity of lithium ion by combining graphene nanoribbons with tin oxide.
Air Force Office of Scientific Research

Contact: Robert White
Air Force Office of Scientific Research

Public Release: 15-Jul-2013
Nature Chemistry
A new form of carbon: Grossly warped 'nanographene'
By introducing multiple odd-membered ring defects into a graphene lattice, researchers from Boston College and Nagoya University have experimentally demonstrated that the electronic properties of graphene can be modified in a predictable manner through precisely controlled chemical synthesis.
National Science Foundation, Japan Society for the Promotion of Science

Contact: Ed Hayward
Boston College

Public Release: 15-Jul-2013
Journal of Physics D: Applied Physics
York physicists offer novel insight into experimental cancer treatment
Physicists from the University of York have carried out new research into how the heating effect of an experimental cancer treatment works.

Contact: Caron Lett
University of York

Public Release: 12-Jul-2013
Annalen der Physik
York Nanocentre researchers image individual atoms in a living catalytic reaction
Groundbreaking new electron microscopy technology developed at the York JEOL Nanocentre at the University of York is allowing researchers to observe and analyse single atoms, small clusters and nanoparticles in dynamic in-situ experiments for the first time.
Engineering and Physical Sciences Research Council

Contact: Caron Lett
University of York

Public Release: 12-Jul-2013
Small packages delivering huge results
University of Melbourne researchers have developed an efficient system to coat tiny objects, such as bacterial cells, with thin films that assemble themselves which could have important implications for drug delivery as well as biomedical and environmental applications.

Contact: Anne Rahilly
University of Melbourne

Public Release: 11-Jul-2013
Physical Review X
NIST shows how to make a compact frequency comb in minutes
Laser frequency combs -- high-precision tools for measuring different colors of light in an ever-growing range of applications -- are not only getting smaller but also much easier to make. NIST physicists can now make the core of a miniature frequency comb in one minute. Conventional microfabrication techniques, by contrast, may require hours, days or even weeks.
Defense Advanced Research Projects Agency, NASA

Contact: Laura Ost
National Institute of Standards and Technology (NIST)

Public Release: 10-Jul-2013
Chemistry of Materials
Putting more science into the art of making nanocrystals
Andrew Greytak, a chemist in the College of Arts and Sciences at the University of South Carolina, is leading a research team that's making the process of synthesizing quantum dots much more systematic. His group just published a paper in Chemistry of Materials detailing an effective new method for purifying CdSe nanocrystals with well-defined surface properties.

Contact: Steven Powell
University of South Carolina

Public Release: 10-Jul-2013
Proceedings of the National Academy of Sciences
Jagged graphene edges can slice into cell membranes
Researchers from Brown University have shown how tiny graphene sheets can be big trouble for cells. Sharp corners and jagged edges on the sheets puncture cell membranes, allowing the sheet to enter the cell and disrupt function. The new understanding of how graphene interacts with cells could lead to safer production of this important nanomaterial.
National Science Foundation, NIH/National Institute of Environmental Health Sciences

Contact: Kevin Stacey
Brown University

Public Release: 10-Jul-2013
Journal of Controlled Release
Nanoparticles, 'pH phoresis' could improve cancer drug delivery
Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles that concentrate and expand in the presence of higher acidity found in tumor cells.
National Science Foundation

Contact: Emil Venere
Purdue University

Showing releases 1551-1575 out of 1765.

<< < 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 > >>