News Tips from ACS NANO DOE Research News Site

EurekAlert!, a service of AAAS
Home About us
Advanced Search
1-Sep-2014 17:49
US Eastern Time

Username:

Password:

Register

Forgot Password?

Press Releases

Breaking News

Science Business

Grants, Awards, Books

Meetings

Multimedia

Science Agencies
on EurekAlert!

US Department of Energy

US National Institutes of Health

US National Science Foundation

Calendar

Submit a Calendar Item

Subscribe/Sponsor

Links & Resources

Portals

RSS Feeds

Accessibility Option On

Options

Portal Home

Glossary

Background Articles

Research Papers

Meetings

Links & Resources

Essays

Online Chats

RSS Feed

Nanotechnology

News Releases

Key: Meeting M      Journal J      Funder F

Showing releases 251-275 out of 1665.

<< < 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 > >>

Public Release: 15-May-2014
Scientific Reports
Silly Putty material inspires better batteries
Using a material found in Silly Putty and surgical tubing, a group of researchers at the University of California, Riverside Bourns College of Engineering have developed a new way to make lithium-ion batteries that will last three times longer between charges compared to the current industry standard.

Contact: Sean Nealon
sean.nealon@ucr.edu
951-827-1287
University of California - Riverside

Public Release: 15-May-2014
Synthetic biology still in uncharted waters of public opinion
A new set of focus groups convened by the Synthetic Biology Project at the Wilson Center found continued low awareness of synthetic biology, as well as concerns about specific applications.

Contact: Aaron Lovell
aaron.lovell@wilsoncenter.org
202-691-4320
Woodrow Wilson International Center for Scholars/Science and Technology Innovation Program

Public Release: 15-May-2014
European Physical Journal E
Stability lost as supernovae explode
Exploding supernovae are a phenomenon that is still not fully understood. In a recent paper published in EPJ E, Yves Pomeau and his colleagues from the CNRS provide a new model of supernovae represented as dynamical systems subject to a loss of stability, just before they explode. Because similar stability losses also occur in dynamical systems in nature, this model could be used to predict natural catastrophes before they happen.

Contact: Saskia Rohmer
saskia.rohmer@springer.com
49-622-148-78414
Springer

Public Release: 15-May-2014
NPL and Dstl present potential 'Łbillion global market' in quantum technologies
UK physicists are bringing the quantum science of atomic clocks to timing and positioning technologies for industry, academia and commerce.

Contact: James Romero
james@proofcommunication.com
084-568-01866
National Physical Laboratory

Public Release: 14-May-2014
UChicago to lead quantum engineering research team
The University of Chicago's Institute for Molecular Engineering will lead a team of researchers from five universities in an ambitious five-year, $6.75 million project to create a new class of quantum devices that will allow communication among quantum computers.
Air Force Office of Scientific Research

Contact: Steve Koppes
skoppes@uchicago.edu
773-702-8366
University of Chicago

Public Release: 14-May-2014
$31 million gift will fund early stage UW research by high-tech entrepreneurs
The University of Washington is receiving a $31.2 million gift from Washington Research Foundation to boost entrepreneurship and support research that tackles some of society's most crucial challenges. The award will fund four interdisciplinary initiatives that seek to advance global innovation in clean energy, protein design, big data science and neuroengineering.
Washington Research Foundation

Contact: Michelle Ma
mcma@uw.edu
206-543-2580
University of Washington

Public Release: 14-May-2014
Proceedings of the National Academy of Sciences
Advance brings 'hyperbolic metamaterials' closer to reality
Researchers have taken a step toward practical applications for 'hyperbolic metamaterials,' ultra-thin crystalline films that could bring optical advances including powerful microscopes, quantum computers and high-performance solar cells.
US Army Research Office, National Science Foundation

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University

Public Release: 14-May-2014
Nature Communications
Using nature as a model for low-friction bearings
The mechanical properties of natural joints are considered unrivalled. Cartilage is coated with a special polymer layer allowing joints to move virtually friction-free, even under high pressure. Using simulations on Jülich's supercomputers, scientists from Forschungszentrum Jülich and the University of Twente have developed a new process that technologically imitates biological lubrication and even improves it using two different types of polymers. The results will be published in the science journal Nature Communications.

Contact: Tobias Schlößer
t.schloesser@fz-juelich.de
49-246-161-4771
Forschungszentrum Juelich

Public Release: 14-May-2014
Nature Communications
Microchip-like technology allows single-cell analysis
Engineers have developed a system similar to random access memory chips that allows the fast, efficient control and separation of individual cells. Once scaled up, the technology promises to sort and store hundreds of thousands of cells in a matter of minutes, enabling biologists to study vast arrays of single cells.
National Research Foundation of Korea, National Science Foundation, Research Triangle Materials Research Science and Engineering Center

Contact: Ken Kingery
ken.kingery@duke.edu
919-660-8414
Duke University

Public Release: 13-May-2014
Nature Communications
Chapman University affiliated physicist publishes on the Aharonov-Bohm effect in Nature
Chapman University affiliated quantum physicist Yutaka Shikano, Ph.D., and his co-authors used the Aharonov-Bohm effect to observe the tunneling of a single particle for the first time.
Mext Kakenhi Quantum Cybernetics Project, Grant-in Aid for Young Scientists, JSPS

Contact: Sheri Ledbetter
sledbett@chapman.edu
714-289-3143
Chapman University

Public Release: 13-May-2014
Advanced Materials
UT Dallas team creates flexible electronics that change shape inside body
A team of researchers from UT Dallas has helped create flexible transistors that can grip large tissues, nerves and blood vessels without losing their electronic properties. These biologically adaptive, flexible transistors might one day help doctors learn more about what is happening inside the body, and stimulate the body for treatments.
National Science Foundation Graduate Research Fellowship, National Science Foundation East Asia and Pacific Summer Institute

Contact: LaKisha Ladson
lakisha.ladson@UTDallas.edu
972-883-4183
University of Texas at Dallas

Public Release: 13-May-2014
German-Polish physicist duo win 2014 Copernicus Award
Physicists professor Harald Weinfurter from the Ludwig Maximilians University in Munich and professor Marek Żukowski from the University of Gdansk have been chosen to receive the 2014 Copernicus Award from the Deutsche Forschungsgemeinschaft and the Foundation for Polish Science for their services to German-Polish research cooperation.

Contact: Marco Finetti
marco.finetti@dfg.de
49-228-885-2230
Deutsche Forschungsgemeinschaft

Public Release: 13-May-2014
Review of Scientific Instruments
MEMS nanoinjector for genetic modification of cells
The ability to transfer a gene or DNA sequence from one animal into the genome of another plays a critical role in a wide range of medical research -- including cancer, Alzheimer's disease, and diabetes, and now there's a way to avoid cell death when introducing DNA into egg cells. In Review of Scientific Instruments, the team describes its microelectromechanical system nanoinjector, which was designed to inject DNA into mouse zygotes.

Contact: Jason Socrates Bardi
jbardi@aip.org
240-535-4954
American Institute of Physics

Public Release: 12-May-2014
Nano Letters
Penn research combines graphene and painkiller receptor into scalable chemical sensor
Researchers from the University of Pennsylvania have led an effort to create an artificial chemical sensor based on one of the human body's most important receptors, one that is critical in the action of painkillers and anesthetics. In these devices, the receptors' activation produces an electrical response rather than a biochemical one, allowing that response to be read out by a computer.
National Science Foundation, National Institutes of Health, Frank & Louise Groff Foundation

Contact: Evan Lerner
elerner@upenn.edu
215-573-6604
University of Pennsylvania

Public Release: 12-May-2014
Dissertations and Features
Nanostructures to facilitate the process to eliminate organic contaminants in water
Researcher at the Public University of Navarre has developed nanostructures that assist in the process to decontaminate water. The nanostructures are coated in titanium oxide to which nitrogen has been added. This allows sunlight, rather than ultraviolet radiation, to trigger the process involving the chemical reaction and destruction of contaminants.

Contact: Oihane Lakar
o.lakar@elhuyar.com
0034-943-363-040
Elhuyar Fundazioa

Public Release: 12-May-2014
IEEE Transactions on Robotics
Ultra-fast, the bionic arm can catch objects on the fly
A robot developed by EPFL researchers is capable of reacting on the spot and grasping objects with complex shapes and trajectories in less than five-hundredths of a second.

Contact: Sarah Perrin
sarah.perrin@epfl.ch
41-216-932-107
Ecole Polytechnique Fédérale de Lausanne

Public Release: 11-May-2014
Nature Nanotechnology
Flexible supercapacitor raises bar for volumetric energy density
Scientists have taken a large step toward making a fiber-like energy storage device that can be woven into clothing and power wearable medical monitors, communications equipment or other small electronics. Their supercapacitor packs an interconnected network of graphene and carbon nanotubes so tightly that it stores energy comparable to some thin-film lithium batteries.
Ministry of Education, Singapore and Asian Office of Aerospace Research and Development of the US

Contact: Kevin Mayhood
kevin.mayhood@case.edu
216-368-4442
Case Western Reserve University

Public Release: 9-May-2014
Physicists receive prestigious DOE honor for young faculty
Two Northwestern University physicists have been selected by the Department of Energy to receive significant research funding as part of the DOE's highly selective Early Career Research Program. Eric Dahl and Nathaniel Stern are among only 35 scientists at US universities and national laboratories to receive the honor this year. Each will receive $750,000 over five years. With this support, Dahl will build novel instruments for the detection of dark matter particles, and Stern will investigate quantum phenomena in two-dimensional materials.
DOE/Office of Science

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University

Public Release: 9-May-2014
Nature Communications
Properties of water at nanoscale will help to design innovative technologies
Scientists from Politecnico di Torino (Turin, Italy) and Houston Methodist Research Institute (Houston, USA) have just proposed on Nature Communications a novel understanding of unexpected water properties at the nanoscale in the close proximity of solid surfaces. More rationally designed contrast agents for improved Magnetic Resonance Imaging performances are the first applications of the discovery.

Contact: Tiziana Vitrano
relazioni.media@polito.it
Politecnico di Torino

Public Release: 9-May-2014
Angewandte Chemie
New method sneaks drugs into cancer cells before triggering release
Biomedical engineering researchers have developed an anti-cancer drug delivery method that essentially smuggles the drug into a cancer cell before triggering its release. The method can be likened to keeping a cancer-killing bomb and its detonator separate until they are inside a cancer cell, where they then combine to destroy the cell.
National Institutes of Health

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University

Public Release: 8-May-2014
Science Signaling
Chemotherapy timing is key to success
Nanoparticles that stagger delivery of two drugs knock out aggressive tumors.

Contact: Andrew Carleen
acarleen@mit.edu
617-253-1682
Massachusetts Institute of Technology

Public Release: 8-May-2014
Ultramicroscopy
This FIB doesn't lie: New NIST microscope sees what others can't
Microscopes don't exactly lie, but they have limitations. Scanning electron microscopes can't see electrical insulators, and their high energies can actually damage some types of samples. Researchers at NIST have built the first low-energy focused ion beam (FIB) microscope using lithium. The team's new approach opens up the possibility of creating a whole category of FIBs using any one of up to 20 different elements, greatly increasing the options for imaging, sculpting or characterizing materials.

Contact: Mark Esser
mark.esser@nist.gov
301-975-8735
National Institute of Standards and Technology (NIST)

Public Release: 8-May-2014
Jairo Sinova and Stuart Parkin are awarded Alexander von Humboldt Professorships
Germany's Federal Minister of Education and Research, Johanna Wanka, and the President of the Alexander von Humboldt Foundation, Helmut Schwarz, have today conferred six prestigious Alexander von Humboldt Professorships, among others to theoretical physicist professor Jairo Sinova of Mainz University and to professor Stuart S. P. Parkin, Director of the Max Planck Institute for Microstructure Physics in Halle, Fellow of the JGU Gutenberg Research College, and external member of the MAINZ Graduate School of Excellence.
Humboldt Foundation

Contact: Dr. Matthias Neubert
matthias.neubert@uni-mainz.de
49-613-139-23681
Johannes Gutenberg Universitaet Mainz

Public Release: 8-May-2014
International Union of Crystallography Journal
Rotational X-ray tracking uncovers hidden motion at the nanoscale
Over the past two decades or so, there has been increasing interest and development in measuring slow dynamics in disordered systems at the nanoscale, brought about in part from a demand for advancements in the food and consumer products industries.
National Science Foundation, DOE/Office of Science, DOE/Office of Basic Energy Sciences

Contact: Jonathan Agbenyega
ja@iucr.org
International Union of Crystallography

Public Release: 8-May-2014
Nature Communications
Bioprinting a 3D liver-like device to detoxify the blood
Nanoengineers at the University of California, San Diego have developed a 3-D-printed device inspired by the liver to remove dangerous toxins from the blood. The device, which is designed to be used outside the body -- much like dialysis -- uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections. Their findings were published May 8 in the journal Nature Communications.
National Institutes of Health, National Science Foundation

Contact: Catherine Hockmuth
chockmuth@ucsd.edu
858-822-1359
University of California - San Diego

Showing releases 251-275 out of 1665.

<< < 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 > >>