News Release

Measuring on ice: Researchers create 'smart' ice skating blade

Peer-Reviewed Publication

IOP Publishing

Instrumented Ice Skating Blade

image: This image shows a hybrid skate with strain gauges and wires leading from gauges to Wheatstone bridge boards. view more 

Credit: IOP Publishing/<i>Measurement Science and Technology</i>

An ice skating blade that informs figure skaters of the stresses they are imposing on their joints has been developed by a group of researchers in the US.

The small, lightweight device has been built to measure the force that a figure skater exerts on the ice when performing their repertoire of jumps and spins and could potentially be used by skaters and their trainers to avoid injuries, as well as inform the design of new skating boots.

The instrumented blade has been presented today, 21 October, in IOP Publishing's journal Measurement Science and Technology.

Figure skaters are continually putting their body under stress, practicing up to five days a week, all year round, and performing anywhere between 50 and 100 jumps in each session.

Simulations outside of the ice rink have suggested that skaters exert a force magnitude of up to six times their body weight when taking off and landing from a jump.

Co-author of the research Professor Deborah King, from Ithaca College, said: "Questions have been raised about boot design and how it affects a skater's impact forces, potentially causing injuries. However, very little is known about the actual impact forces on ice during jumping and other figure skating skills.

"This is because on-ice measurements of the forces associated with figure skating are fairly difficult to record due to the complexity of the sport and not wanting to interfere with the skater during their jumps. As such, we decided to develop a method that measures forces directly from the blade."

The blade, created by a group of researchers from Brigham Young University and Ithaca College, is fitted with strain gauges. The strain gauges are attached directly to the stanchions where the blade connects to the boot, and when the stanchions deform due to the force induced by the ice skater, it causes the strain gauges to deform as well.

Once deformed, the electrical resistance of the strain gauge changes—this change is measured by a device called a Wheatstone bridge, and a central control system is used to calculate the overall force that was imparted. The entire measuring device, including a battery, weighs 142 g and fits under the boot space of the blade so that none of the components makes contact with the ice.

The design of the system is unobtrusive and would allow figure skaters to perform their typical repertoires of jumps, spins and footwork without any noticeable interference.

To test the measuring device, the researchers mounted an instrumented blade onto an artificial leg and foot and applied 14 vertical loads between 0 and 236 kg to the leg.

The instrumented blade was then fitted to an experienced skater who was asked to jump from a 20 cm high box onto the floor whilst measurements were taken from the device. These results were then compared with measurements from a different experiment, whereby the skater wore a normal ice skating blade and landed onto a force plate.

"It was encouraging to see that the device performed very well for vertical loads, which is where our initial focus has been, and we were able to replicate the force curves measured from the force plate using the instrumented blade," Professor King continued.

"The blade has been designed to measure horizontal loads, but we are in the process of integrating blade angles into the monitoring process to more accurately record the magnitude of forces during a landing."

From Tuesday 21 October, this paper can be downloaded from http://iopscience.iop.org/0957-0233/25/12/125901

###

For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop. For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer, michael.bishop@iop.org, with your name, organisation, address and a preferred username.

The published version of the paper 'Instrumented figure skating blade for measuring on-ice skating forces' (Acuña S A et al 2014 Meas. Sci. Technol. 25 125901) will be freely available online from Tuesday 21 October. It will be available at http://iopscience.iop.org/0957-0233/25/12/125901

Measurement Science and Technology

Measurement Science and Technology covers all aspects of the theory, practice and application of measurement and sensor technology across the sciences.

IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute. Go to ioppublishing.org.

Access to Research

Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk

The Institute of Physics

The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.