[ Back to EurekAlert! ]

Contact: Daniel Kane
University of California - San Diego

Visualizing the 'Nanosponge Vaccine' from UC San Diego

Caption: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse dendritic cell -- an immune-system cell. The detained alpha-haemolysin toxins were labeled with a fluorescent dye which glows yellow. The nanosponge vaccine with detained toxins and can be seen glowing yellow after uptake by the dendritic cell. The cell is membrane stained red and the nuclei stained blue.

Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA (methicillin-resistant Staphylococcus aureus) could serve as a safe and effective vaccine against this toxin. This "nanosponge vaccine" enabled the immune systems of mice to block the adverse effects of the alpha-haemolysin toxin from MRSA -- both within the bloodstream and on the skin. Nanoengineers from UC San Diego described the safety and efficacy of this nanosponge vaccine in the Dec. 1 issue of Nature Nanotechnology.

Credit: UC San Diego Department of NanoEngineering

Usage Restrictions: Please use the following photo credit: UC San Diego Department of NanoEngineering

Related news release: 'Nanosponge vaccine' fights MRSA toxins

[ Back to EurekAlert! ]