[ Back to EurekAlert! ]

Contact: Dave Weston
d.weston@ucl.ac.uk
44-020-767-97678
University College London

An Unconventional Metal

Caption: The magnetic bar magnets (called "magnetic moments") associated with the mobile electrons (red arrows) responsible for electrical conduction and manganese atoms (green arrows) in manganese doped iron silicide (Fe1-xMnxSi). This figure depicts the coupling of the magnetic moments as the temperature is reduced from room temperature (top of the figure) where the magnetic dipoles are independent, to very low temperature (bottom of the figure) where coupling between the dipoles creates regions where the moments add to zero (light blue region). The existence of a population of uncoupled complexes (depicted here in the yellow region) down to the lowest temperatures results in the material being neither a magnet nor common semiconductor. External magnetic fields align these rare yellow regions to the magnetic field, switching on ordinary semiconducting behavior.

Credit: UCL/London Centre for Nanotechnology

Usage Restrictions: None

Related news release: Creating unconventional metals


[ Back to EurekAlert! ]