News Release

Scientists help police bust forgers

Peer-Reviewed Publication

IOP Publishing

Forging wills and bank cheques could now be near impossible thanks to a team of physicists in Rome (Italy). Writing in the latest issue of the Institute of Physics journal, Journal of Optics A, the scientists announce a new technique that can detect forged handwriting better than ever before.

Professor Giuseppe Schirripa Spagnolo, Carla Simonetti and Lorenzo Cozzella from the Università degli Studi "Roma Tre" in Rome, Italy, have devised a forgery detection method that creates a 3D hologram of a piece of handwriting and analyses tiny variations and bumps along its path using two common scientific techniques: virtual reality and image processing.

Until now, detecting forged signatures or handwriting has generally been done by experts who analyse the sequence of individual "strokes" in a piece of handwriting using normal, 2D samples. However, a good forgery can go undetected at the 2D level because it isn't always easy to determine the exact sequence of strokes.

Schirripa Spagnolo's team create 3D holograms of the path of a piece of writing, generating an image on a computer that looks like a ditch or furrow. This makes it easy to analyse variations or "bumps" generated by the writer's pressure on the paper at cross over points, for example the mid-point of the figure eight.

The most common technique used by forgers is tracing, although in real life no two signatures are ever identical. A more sophisticated method is known as the "Freehand Technique" and here the forger copies the general style and characteristics of the handwriting they are trying to copy. However, in both cases it is almost impossible for the forger to reproduce the exact variation of pressure used by the original writer.

Professor Schirripa Spagnolo said: "Using image processing and virtual reality makes it easy to detect the presence of bumps at cross-over points. Finding these bumps allows experts to easily determine the sequence of strokes in a piece of handwriting and the tell tale signs of a forgery or original. Another benefit of this technique is that it doesn't damage the sample."

The Rome team used their technique, known as "3D Micro-profilometry" to analyse hundreds of different handwriting samples made using a variety of different paper types and pens. They have also applied their technique to wills and cheques and successfully detected forgeries in both.

Professor Schirripa Spagnolo said: "We believe this type of 3D micro-profilometry is one of the most promising ways of detecting forged handwriting, and it will be a powerful tool for forensic experts around the world."

Please mention "the Institute of Physics' Journal of Optics A" as the source of this story and if publishing online carry a hyperlink to the journal homepage: http://www.iop.org/EJ/journal/JOptA where the paper can be viewed free of charge for 30 days.

###

Notes to editors:

1. For further information, pictures or illustrations, contact: David Reid, press officer, Institute of Physics, Tel: 44-20-7470- 4815, Mobile: 07946-321473, E-mail: david.reid@iop.org.

2. The paper 'Superposed strokes analysis by 3D micro-profilometry' by G. S. Spagnolo, C. Simonetti, and L. Cozzella is published in Journal of Optics A: Pure and Applied Optics, Vol. 6, pps 869-874 (Issue 9, Sept. 2004). The paper can be downloaded free of charge from 10th August at http://stacks.iop.org/JOptA/6/869.

3. Professor Schirripa Spagnolo's contact details: work phone: 39-06-5517 7046, work cell: 39-329-0571-037, e-mail: schirrip@uniroma3.it.

4. The Institute of Physics is a leading international professional body and learned society with over 37,000 members, which promotes the advancement and dissemination of a knowledge of and education in the science of physics, pure and applied. It has a world-wide membership and is a major international player in:
- scientific publishing and electronic dissemination of physics;
- setting professional standards for physicists and awarding professional qualifications;
- promoting physics through scientific conferences, education and science policy advice.

The Institute is a member of the Science Council, and a nominated body of the Engineering Council. The Institute works in collaboration with national physical societies and plays an important role in transnational societies such as the European Physical Society and represents British and Irish physicists in international organisations. In Great Britain and Ireland the Institute is active in providing support for physicists in all professions and careers, encouraging physics research and its applications, providing support for physics in schools, colleges and universities, influencing government and informing public debate.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.