News Release

IL-7 wipes out HIV-1 hideouts

Peer-Reviewed Publication

JCI Journals

Recent advances in therapy for HIV disease, particularly the use of combinations of antiretroviral drugs, collectively termed highly active antiretroviral therapy (HAART), have resulted in a dramatic improvement in health status for a large number of HIV-infected individuals. Many of these people maintain clinically undetectable loads of the HIV virus, however a pool of persistently HIV-infected cells remains and prevents the complete eradication of HIV infection. New treatment strategies are now focused on increasing the turnover of latent pools of virus through activation of latent infected cells (which promotes cell death and accelerates viral clearance) and combining this approach with intense antiretroviral therapy.

In the January 3 issue of the Journal of Clinical Investigation, Roger Pomerantz, Giuseppe Nunnari, and colleagues from Thomas Jefferson University demonstrate that the growth factor IL-7 is a unique, potent, and strain-specific inducer of latent HIV-1 activation in infected individuals on virally suppressive HAART. IL-7, a molecule that promotes the growth and activation of B and T cells, was shown to also stimulate HIV-1 activation from resting T cells in order to deplete pools of HIV-1–infected cells. The authors show that a distinct viral species is activated by IL-7, and suggest that different molecules may deplete only a specific proportion of the latent HIV-1 population in individuals on HAART. IL-7 could potentially be combined with other molecules to potentially delete reservoirs of HIV-1 in new antiretroviral approaches.

###

TITLE: IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART

AUTHOR CONTACT: Roger Pomerantz
Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Phone: 215-503-8575; Fax: 215-503-2624; E-mail: Roger.J.Pomerantz@jefferson.edu.

A PDF of this article this article is available at: http://www.jci.org/cgi/content/full/115/1/128.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.