News Release

Hotspots of mercury contamination identified in eastern North America

Harmful levels of neurotoxin are detected in fish and birds

Peer-Reviewed Publication

American Institute of Biological Sciences

A US and Canadian research team surveying mercury contamination in fish and birds in the northeastern United States and southeastern Canada has identified five "hotspots" where concentrations of the element exceed those established for human or wildlife health. The team focused on levels of the potent neurotoxin in yellow perch and common loons, but it also took into account contamination in other fish, birds, and mammals. In addition to these hotspots in New England, New York, and Nova Scotia, the researchers found nine "areas of concern" in these regions and in Quebec and New Brunswick. Findings from the team's analysis are summarized in the January 2007 issue of BioScience.

The hotspots are believed to result from complex processes that move atmospherically released mercury through the environment, and from site-specific characteristics such as the high sensitivity of wetlands and forested areas to mercury inputs. Local sources of mercury are also significant. Although mercury is not directly harmful at ambient levels, it is concentrated up to a millionfold and chemically modified in aquatic food chains, resulting in dangerous levels of methylmercury in some wildlife species. Fish consumption advisories responding to mercury contamination exist in all the states and provinces included in the study, and loons are adversely affected by mercury levels they experience.

The hotspots have implications for "cap and trade" approaches being implemented for regulation of emissions from coal-fired electric power stations, which, along with municipal waste incinerators, are major sources of mercury pollution. Cap and trade approaches seek to reduce the total release of mercury but could lead to static or increased emissions in some areas. Greater deposition of mercury near areas that are highly sensitive to the element or that are already affected by it could raise the risk to people and wildlife that consume fish. There is reason to believe, however, that lowering emissions can reduce risk: an analysis of levels of mercury contamination over time in the Merrimack River watershed suggests that lowered emissions reduced mercury levels in biota within a few years.

The 10-member research team was led by David C. Evers of the BioDiversity Research Institute in Gorham, Maine. The study was based on samples collected over four years by the Northeastern Ecosystem Research Cooperative and made use of 7311 observations for seven species. The study report in BioScience is accompanied by an overview article, written by Charles T. Driscoll of Syracuse University and colleagues, that summarizes current knowledge about mercury contamination in the region; the authors conclude that reductions in mercury emissions beyond those currently under way will be needed to eliminate the element as a health risk to humans or to populations of loons.

###

BioScience publishes commentary and peer-reviewed articles covering a wide range of biological fields, with a focus on "Organisms from Molecules to the Environment." The journal has been published since 1964. AIBS is an umbrella organization for professional scientific societies and organizations that are involved with biology. It represents some 200 member societies and organizations with a combined membership of about 250,000.

The research articles in the January 2007 issue of BioScience are as follows:

Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States
Charles T. Driscoll, Young-Ji Han, Celia Y. Chen, David C. Evers, Kathleen Fallon Lambert, Thomas M. Holsen, Neil

Biological Mercury Hotspots in the Northeastern United States and Southeastern Canada
David C. Evers, Young-Ji Han, Charles T. Driscoll, Neil C. Kamman, M. Wing Goodale, Kathleen Fallon Lambert, Thomas M. Holsen, Celia Y. Chen, Thomas A. Clair, and Thomas Butler

Building EDENs: The Rise of Environmentally Distributed Ecological Networks
Joseph M. Craine, Jessamy Battersby, Andrew J. Elmore, and Andrew W. Jones

Employing Philosophical Dialogue in Collaborative Science
Sanford D. Eigenbrode, Michael O’Rourke, J. D. Wulfhorst, David M. Althoff, Caren S. Goldberg, Kaylani Merrill, Wayde Morse, Max Nielsen-Pincus, Jennifer Stephens, Leigh Winowiecki, and Nilsa A. Bosque-Pérez

Merging Precaution with Sound Science under the Endangered Species Act
Daniel J. McGarvey

Constructing a Broader and More Inclusive Value System in Science
María Uriarte, Holly A. Ewing, Valerie T. Eviner, and Kathleen C. Weathers


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.