News Release

A fly lamin gene is both like and unlike human genes

Peer-Reviewed Publication

PLOS

Mitch Dushay and colleagues at Uppsala University in Sweden announce the publication of their paper, "Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies" in the June 13th issue of the online, open-access journal PLoS ONE.

Lamins are intermediate filament proteins that make up a matrix underlying the nuclear membrane. Mammals have two types of lamins; A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously. Mutations in the gene coding for human lamin A cause a range of diseases collectively called laminopathies, including forms of muscular dystrophy and premature aging diseases. The fruit fly Drosophila melanogaster has 2 lamin genes that are expressed in A- and B-type patterns, and it has been assumed that similarly expressed lamins perform similar functions.

Yet, Dushay and his colleagues, among others, have shown that the fly lamin genes are more closely related to each other than to mammalian lamin genes. While the independent evolution of similar expression patterns must have been driven by similar vital lamin gene functions, Dushay et el. found that mutations in the ubiquitously expressed Drosophila lamin gene cause larvae to move less and show subtle muscle defects, while surviving lamin adults walk poorly and can't fly – like aged wild type flies. This suggests that lamin mutations might cause neuromuscular defects, premature aging, or both. The resemblance of Drosophila lamin phenotypes to human laminopathies provides an interesting case of gene expression and function diverging through evolution, and promises greater insight into lamin function, and possibly into laminopathic diseases and aging.

###

Disclaimer

The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Citation: Muñoz-Alarcón A, Pavlovic M, Wismar J, Schmitt B, Eriksson M, et al (2007) Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies. PLoS ONE 2(6): e532. doi:10.1371/journal.pone.0000532

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.plosone.org/doi/pone.0000532

PRESS ONLY PREVIEW: http://www.plos.org/press/pone-02-06-dushay.pdf


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.