News Release

Molecules line up to make the tiniest of wires

Peer-Reviewed Publication

University of Alberta

As technology gets smaller and smaller, the computer industry is facing the complex challenge of finding ways to manufacture the minuscule components necessary.

“Computer chips are constantly getting smaller and smaller. There’s an unrelenting decrease in size. And the question arises, how do you wire these things in"” said Dr. Jillian Buriak, University of Alberta professor and senior research officer at the National Institute for Nanotechnology. “If you’re going to make something on the order of 22 or even 18 nanometres, then you’d better have a plug that’s about that size, too.”

A team of NINT researchers, headed by Buriak, has demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. The process can produce nano-wires that are 5,000 times longer than they are wide. The innovative technique for producing very small conductive nano-wires on silicon chips meets the need for connecting ever-smaller transistors and other electronic components.

“You need very tiny wires to connect everything,” said Buriak. “We’ve figured out a way to use molecules that will self-assemble to form the lines that can be used as wires. Then we use those molecules as templates and fill them up with metal, and then we have the wires that we want. You use the molecules to do the hard work for you.”

In one example, 25 parallel platinum nano-wires were made using this self assembly process, with each wire measuring only 10 nm in width, but extending to a length of 50 microns.

While the idea of wires ‘self-assembling’ sounds like something from science-fiction, it’s a natural process, says Buriak.

“You are the product of self-assembly. The way DNA forms a double helix is self-assembly. It’s just that molecules will recognize each other, bind to each other and then they’ll form structures,” she said. “And the molecules we’re using are actually very simple. They’re just polymers, just plastics that do that naturally.”

While the new process could provide the solution for computer manufacturers looking for ways of increasing the speed and storage capacity of electronics, it could also mean cheaper electronics as well.

“If you have to go and lithographically define one single wire, it’s going to be painstakingly hard and expensive,” said Buriak. “But, if you can have a cheap molecule do it for you, that’s great, that’s going to be much cheaper, use much less energy and be a little more environmentally friendly.”

###

The research findings are published in the journal Nature Nanotechnology.

NINT is a national research facility run by the National Research Council and the University of Alberta.

For more information at this research, Dr. Buriak can be reached at jburiak@ualberta.ca.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.