[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
28-Oct-2007

[ | E-mail ] Share Share

Contact: Clare Collins
CollCX@upmc.edu
412-647-3555
University of Pittsburgh Schools of the Health Sciences
@UPMCnews

Intravenous gene therapy protects normal tissue of mice during whole-body radiation

LOS ANGELES, Oct. 28 - Gene therapy administered intravenously could be an effective agent to protect vital organs and tissues from the effects of ionizing radiation in the event of large-scale exposure from a radiological or nuclear bomb, according to an animal study presented today by University of Pittsburgh researchers at the 49th annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Los Angeles.

"Ionizing radiation can be extremely damaging to cells, tissues, organs and organ systems," said Joel S. Greenberger, M.D., professor and chairman, department of radiation oncology, University of Pittsburgh School of Medicine. "In previous studies, we demonstrated that gene therapy can be both swallowed in liquid form and inhaled through a nebulizer prior to radiation exposure to protect healthy tissues from damage. In this study, we found that the same therapy administered intravenously also offers protection during exposure to whole-body irradiation." Dr. Greenberger added that intravenous administration could potentially offer wide-reaching protection to the public in the event of a terrorist attack since experts believe a significant number of the population would die within 30 days of receiving a large dose of radiation to the entire body.

In the study, mice were used to test the protective effects of manganese superoxide dismutase plasmid liposome (MnSOD-PL) gene therapy on the bone marrow during whole-body irradiation. The researchers found that in a control group of mice that received an initial 9.5 Gy dose of radiation, 58 percent survived at 30 days compared to 90 percent after the same length of time for an experimental group of mice that were injected with MnSOD-PL prior to irradiation. Between 30 and 330 days, there were no differences in survival rates between experiment and control group mice, indicating that systemic MnSOD-PL treatment was not harmful to survival.

"Intravenous administration of gene therapy appears to prevent the damaging effects of radiation, suggesting it is a viable delivery method," said Dr. Greenberger. "Future clinical studies will tell us whether this therapy can protect people from the deadly effects of radiation."

###

The study's co-authors include Tracy Smith, B.S., James J. Schlesselman, Ph.D., and Michael W. Epperly, Ph.D., all with the department of radiation oncology at the University of Pittsburgh School of Medicine. The study was funded by a $10 million grant from the National Institute of Allergy and Infectious Diseases (NIAID) to the University of Pittsburgh School of Medicine in 2005 to create a Center for Medical Countermeasures Against Radiation.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.