Public Release:  Cold Spring Harbor Protocols features innovative methods for embryology research

Cold Spring Harbor Laboratory

COLD SPRING HARBOR, N.Y. (Mon., Dec. 3, 2007) - Two methods that permit scientists to examine critical stages in early embryogenesis are featured in this month's release of Cold Spring Harbor Protocols. The methods, which are freely accessible online (www.cshprotocols.org), describe how to fluorescently tag cells in very young embryos. These cell-tagging techniques, combined with sophisticated imaging methods, permit scientists to visualize even subtle movements of individual cells in the embryos, as they morph, divide, and migrate.

The first protocol, available at www.cshprotocols.org/cgi/content/full/2007/24/pdb.prot4915, describes a step-by-step approach to label specific cells of live mouse embryos using fluorescent dyes called carbocyanine dyes. Carbocyanine dyes are ideal for this purpose because they can be used on living embryos. After labeling, the embryos are imaged to reveal the precisely coordinated patterns of cell movements as the embryo develops.

The protocol was contributed by Dr. Patrick Tam's group from the University of Sydney, Australia (www.medfac.usyd.edu.au/people/academics/profiles/ppltam.php). His lab uses these techniques to investigate the timing and patterning of cell movements during gastrulation, which is a critical stage in early embryonic development. Also, by performing this procedure in embryos that are both normal and genetically mutated, they can better understand the functions of specific genes involved in gastrulation.

The second featured protocol is from Dr. Rusty Lansford's lab at Caltech (quad.bic.caltech.edu/~fraserlab/people/lansford/). It describes how to insert a DNA vector into very young bird (quail and chicken) embryos using a method called electroporation. The DNA vector contains a gene of interest attached to a fluorescent marker, which allows the researchers to track the fluorescently labeled cells using imaging techniques. Lansford's group uses this method to investigate mechanisms of brain and heart development in birds.

In Lansford's protocol, the DNA is electroporated into shell-less bird eggs. There are several advantages to using shell-less eggs: each embryo can be more accurately positioned during electroporation, and the researchers can ensure that all embryos used in the experiment are at the same stage in development. The protocol is freely available here: www.cshprotocols.org/cgi/content/full/2007/24/pdb.prot4894.

###

For content and submission information, contact:
David Crotty, Executive Editor
Cold Spring Harbor Protocols
crotty@cshl.edu, 516-422-4007

For access, subscription, and free trial information, contact:
Stephanie Novara, Journals Marketing Manager
Cold Spring Harbor Laboratory Press
novara@cshl.edu, 516-422-4159

About Cold Spring Harbor Protocols: Cold Spring Harbor Protocols (www.cshprotocols.org) is an online resource of methods used in a wide range of biology laboratories. It is structured to be highly interactive, with each protocol cross-linked to related methods, descriptive information panels, and illustrative material to maximize the total information available to investigators. Each protocol is clearly presented and designed for easy use at the bench--complete with reagents, equipment, and recipe lists. Life science researchers can access the entire collection via institutional site licenses, and can add their suggestions and comments to further refine the techniques.

About Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.