[ Back to EurekAlert! ] Public release date: 11-Jan-2008
[ | E-mail Share Share ]

Contact: Holly Auer
holly.auer@uphs.upenn.edu
215-349-5659
University of Pennsylvania School of Medicine

2 different neural pathways regulate loss and regain of consciousness during general anesthesia

Penn researchers first to discover role of specialized neurons that could lead to improved anesthesia drugs

PHILADELPHIA – University of Pennsylvania School of Medicine researchers have answered long-running questions about the way that anesthetics act on the body, by showing that the cellular pathway for emerging from anesthesia is different from the one that drugs take to put patients to sleep during operations. The findings will be published this week in Proceedings of the National Academy of Sciences.

The research focuses on orexins, the small, specialized fraction of the brain’s 100 billion neurons that play a key role in regulating the body’s wakeful state. Studying mice whose orexin systems had been genetically destroyed – a state similar to humans suffering from narcolepsy, a neurological condition that causes unusual daytime sleepiness – Max B. Kelz, MD, PhD, an assistant professor in Penn’s Department of Anesthesiology and Critical Care and the Mahoney Institute of Neurological Sciences, found that these mice took much longer to emerge from general anesthesia than those with normal orexin signaling systems. However, the mice with faulty orexin systems did not appear to fall asleep faster during anesthesia, which suggests that different processes are at play when transitioning to and from the anesthetized stated.

“The modern expectation is that anesthesiologists can simply flip a consciousness switch as easily as we might turn the room lights on or off,” says lead author Max B. Kelz, MD, PhD, an assistant professor in Penn’s Department of Anesthesiology and Critical Care and the Mahoney Institute of Neurological Sciences. “However, what patients do not realize is that despite 160 years of widespread clinical use, the mechanisms through which the state of anesthesia arises and dissipates remain unknown.”

Kelz became interested in these questions after treating a narcoleptic patient who took more than six hours to regain consciousness after anesthesia, compared to the typical six minutes or so. By probing what’s different about the narcoleptic brain, the Penn study has established for the first time that the process of entry into and exit from the anesthetized state are not mirror images of one another.

Kelz and his colleagues, including Sigrid Veasey, MD, associate professor in the Department of Medicine’s Sleep Medicine division, hope that further research on the brain’s neural signaling systems will lead to novel ways to administer anesthesia and “jump start” a speedy, safe return to consciousness – particularly among patients who struggle to wake up or in patient groups that may be more prone to anesthesia side effects such as the elderly and patients with neurodegenerative disorders. The findings might also be used to create designer anesthetic agents that “hijack” the body’s natural sleep cycles to mimic a state closer to natural sleep than a chemically-induced coma, Kelz says.

###

Editor’s note: In addition to Penn researchers involved in the study, a narcoleptic patient who recently experienced a delayed emergence from anesthesia is also available for interviews.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.