Public Release:  American Chemical Society's Weekly PressPac -- March 26, 2008

American Chemical Society

IMAGE

IMAGE: Scientists report environmental contamination from crude recycling practices after collecting dust samples near e-waste processing workshops. Above are discarded printed circuit boards outside a shop in the Beilin district of... view more

Credit: Courtesy of Croucher Institute for Environmental Sciences, Hong Kong Baptist University

ARTICLE #1 FOR IMMEDIATE RELEASE

First evidence that blocking key energy protein kills cancer cells
Journal of Proteome Research

Researchers in Taiwan report for the first time that blocking a key energy-supplying protein kills cancer cells. The finding, described as the first to test possible medical uses of so-called ATP-synthase inhibitors, may lead to new and more effective anti-cancer medications, according to their report, which is scheduled for the April 4 issue of ACS' monthly Journal of Proteome Research.

In the new study, Hsueh-Fen Juan and colleagues focused on ATP synthase, a key protein involved in producing the energy-rich molecules of ATP that power all life processes. For years researchers thought that the protein existed only in mitochondria, structures located inside cells that convert nutrients into energy. Recent studies found high levels of ATP synthase on the surface of cancer cells, but until now the medical implications went unexplored.

The researchers analyzed tissue samples from breast cancer patients and found for the first time that the surface of breast cancer cells contains high levels of ATP synthase. In cell studies, exposing breast cancer cells to a substance that blocks ATP synthase killed the cancer cells but did not harm normal cells, the researchers say. The findings suggest that ATP synthase inhibitors may represent a new approach for fighting breast cancer and other cancer types, they say. -- MTS

ARTICLE #1 FOR IMMEDIATE RELEASE "Targeting Therapy for Breast Carcinoma by ATP Synthase Inhibitor Aurovertin B"

DOWNLOAD FULL TEXT ARTICLE http://dx.doi.org/10.1021/pr700742h

CONTACT:
Hsueh-Fen Juan, Ph.D.
National Taiwan University
Taipei, Taiwan
Phone: 886-2-33664536
Fax: 886-2-23673374
Email: yukijuan@ntu.edu.tw


ARTICLE #2 FOR IMMEDIATE RELEASE

Electric shocks boost plants' production of commercially useful chemicals
Biotechnology Progress

Now for some "shocking" news about plants: Exposing plants to electricity can boost production of useful plant chemicals and may provide a cheaper, safer, and more efficient method for producing medicines, pesticides, and other commercially important plant-based materials, researchers in Arizona and Oklahoma report. Their study is scheduled for the April 4 issue of ACS' Biotechnology Progress, a bi-monthly journal.

Researchers have known for years that plants can produce a diverse array of substances as part of their natural response to environmental factors such as microbial infection, sunlight, and chemical exposure. To boost levels of plant chemicals for commercial purposes, scientists have often turned to synthetic chemical additives as well as genetic engineering, which can be expensive and potentially harmful. A better method is needed, scientists say.

In the new study, Hans VanEtten and colleagues studied the effects of electricity on the ability of the pea plant to produce pisatin, an antifungal substance. They found that exposing pea plants to certain sub-lethal doses of electric current produced 13 times higher amounts of pisatin than plants that were not exposed to electricity. The researchers observed similar increases in plant chemicals produced by a variety of other plants when exposed to electricity. There were no adverse effects on the plants. -- MTS

ARTICLE #2 FOR IMMEDIATE RELEASE "Sub-lethal Levels of Electric Current Elicit the Biosynthesis of Plant Secondary Metabolites"

DOWNLOAD FULL TEXT ARTICLE http://dx.doi.org/10.1021/bp0703329

CONTACT:
Hans VanEtten, Ph.D.
University of Arizona
Tucson, Arizona 85721
Phone: 520-621-9355
Fax: 520-621-7186
Email: vanetten@ag.arizona.edu


ARTICLE #3 FOR IMMEDIATE RELEASE

Chemical signaling may power nanomachines
ACS Nano

In a finding that could provide controlled motion in futuristic nanomachines used for drug delivery, fuel cells, and other applications, researchers in Pennsylvania report that chemical signaling between synthetic microcapsules can trigger and direct movement of these capsules. Their study is scheduled for the currrent isssue of ACS Nano, a monthly journal.

Researchers theorize that synthetic capsules can communicate with each other by physically shuffling chemical signals from capsule to capsule, much like passing water through a fireman's bucket brigade. Scientists recently suggested that this same signaling process also appears capable of sending cues to direct cell movement.

In the new study, Anna C. Balazs and colleagues used computer models to simulate the chemical signaling. They modeled a porous polymer microcapsule filled with nanonparticles to imitate a biological cell. When placed next to an empty capsule, nanoparticles from the filled capsule initiated the motion of the empty capsule, which in turn caused the movement of the filled "signaling" capsule. The same locomotion process could be engineered into futuristic nanomachines to help direct their movement through the body or through fuel cells, the researchers suggest. -- MTS

ARTICLE #3 FOR IMMEDIATE RELEASE "Modeling Microcapsules That Communicate through Nanoparticles To Undergo Self-Propelled Motion"

DOWNLOAD FULL TEXT ARTICLE http://dx.doi.org/10.1021/nn700379v

CONTACT:
Anna C. Balazs, Ph.D.
University of Pittsburgh
Pittsburgh, Pennsylvania 15261
Phone: 412-648-9250
Fax: 412-624-9639
Email: balazs1@engr.pitt.edu


ARTICLE #4 FOR IMMEDIATE RELEASE

Elevated concentrations of metals in China's e-waste recycling workshops
Environmental Science & Technology

In a case study on how not to recycle electronic waste (e-waste), scientists in the United States and Hong Kong have documented serious environmental contamination with potentially toxic metals from crude e-waste recycling in a village located in southeast China. Recycling methods used in family-run workshops could pose a serious health risk to residents of the area through ingestion and inhalation of contaminated dust, the researchers say. Their study is scheduled for the April 15 issue of ACS' Environmental Science & Technology, a semi-monthly journal.

The process of discarding computers and other consumer electronics has emerged as one of the fastest growing segments of the global waste stream. Known as e-waste, these scrapped electronic goods contain lead, copper and other hazardous materials, which can release dangerous toxins that cause air and water contamination. Up to 50-million tons of e-waste is generated worldwide each year -- enough to fill a line of garbage collection trucks stretching halfway around the world -- according to the United Nations Environment Program.

China is now the destination for 70 percent of the computers, TVs, cell phones, and other e-waste recycled globally each year. Ming H. Wong and colleagues collected dust samples from roads adjacent to e-waste processing workshops in Guiya, China, to find that lead levels were 330 and 371 times higher than non e-waste sites located 5 miles and 19 miles away. Copper levels were 106 and 155 times higher. "Currently, there are no guidelines or regulations for heavy metals in dust. It is hoped that the results can serve as a case study for similar e-waste activities in countries such as Africa, India and Vietnam where e-waste is becoming a growing problem, so that the same mistakes could be prevented." -- JS

ARTICLE #4 FOR IMMEDIATE RELEASE "Heavy Metals Concentrations of Surface Dust from e-Waste Recycling and Its Human Health Implications in Southeast China"

DOWNLOAD FULL TEXT ARTICLE http://dx.doi.org/10.1021/es071873x

CONTACT:
Ming H. Wong, Ph.D.
Hong Kong Baptist University
Hong Kong, China
Phone: +852-3411-7746
Fax: +852-3411-7743
Email: mhwong@hkbu.edu.hk


ARTICLE #5 EMBARGOED FOR 9 A.M., EASTERN TIME, March 31, 2008

Debate sharpens over fertilizing the oceans to control global warming
Chemical & Engineering News

As millions of people prepare to fertilize their lawns and gardens this spring, scientists are still in the midst of intensive hand-wringing over the pros and cons of fertilizing the world's oceans in an effort to control global warming, according to an article scheduled for the March 31 issue of Chemical & Engineering News, ACS' weekly newsmagazine.

C&EN Associate Editor Rachel A. Petkewich explains that in theory, ocean fertilization would remove carbon dioxide from the atmosphere by spurring the growth of tiny marine plants termed plankton that need CO2 for growth. First proposed years ago, ocean fertilization has taken on new dimensions now that hundreds of start-up companies are preparing to offer ocean-fertilization services, Petkewich says.

Although fertilization can stimulate the growth of plankton and draw down atmospheric carbon dioxide, scientists do not know whether it would be effective in permanently keeping the carbon dioxide sequestered in the oceans. Environmental groups worry about safety aspects, and government agencies are concerned about the lack of laws to regulate ocean fertilization, the article suggests.

ARTICLE #5 EMBARGOED FOR 9 A.M., EASTERN TIME, March 31, 2008 "Fertilizing the ocean with iron"

This story will be available on March 31 at http://pubs.acs.org/cen/science/86/8613sci1.html

FOR ADVANCE INFORMATION, CONTACT:
Michael Bernstein
ACS News Service
Phone: 202-872-6042
Fax: 202-872-4370
Email: m_bernstein@acs.org


Journalists' Resources

Reserve now: News Media Special Event April 7 in New Orleans

The 2008 edition of the ACS Office of Communications' popular news media tour/briefing/reception heads for a premier research facility where science connects with everyday life. Reporters will visit the U. S. Department of Agriculture's Southern Regional Research Center (SRRC) in New Orleans. After recovery from Hurricane Katrina's devastation, SRRC is continuing a 66-year heritage of discovery. SRRC's landmarks range from development of wrinkle-resistant cotton fabrics to battling the dreaded Formosan subterranean termite in the "Second Battle of New Orleans." The event begins mid-afternoon on April 7 during the ACS' 235th national meeting, followed by a reception with food and beverages. Space is limited so reserve your spot now by contacting Michael Woods (m_woods@acs.org) or Michael Bernstein (m_bernstein@acs.org).

Media registration for ACS National Meeting in New Orleans, April 6-10

Mark your calendars for one of the year's largest and most important scientific events -- the 235th National Meeting and Exposition of the American Chemical Society (ACS), which will be held April 6-10, 2008, in New Orleans, La. With more than 160,000 members in the United States and other countries, ACS is the world's largest scientific society. About 12,000 scientists and others are expected for the event, which will include more than 9,000 reports on new discoveries in chemistry. Those reports span science's horizons from astronomy to zoology and include a special focus on health, energy, food, environment, and alternative fuels. In addition to coverage of breaking science news, the meeting provides an opportunity for independent reporting on disaster recovery efforts in the region prior to the June 1 start of the 2008 hurricane season.

Media should click here (http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_TRANSITIONMAIN&node_id=1359&use_sec=false&sec_url_var=region1) to register, and housing reservations are now open for those who plan to attend the meeting. The ACS Press Center will be located in Room 206 of the Ernest N. Morial Convention Center. It will include a media workroom with staff to assist in arranging interviews, press conferences, wireless Internet access, telephones, computers, photocopy and fax services, and refreshments.

For reporters planning to cover the meeting from their home bases, the ACS Office of Communications will provide an expanded suite of resources, including press releases, non-technical summaries of research presentations, and Internet access to news briefings.

Remote access to media briefings from NOLA via the internet

The ACS Office of Communications is offering news media the opportunity to join press briefings whether covering the meeting onsite or from a remote location. This new updated format in New Orleans will provide access to the increasing number of journalists who cover scientific meetings from their home base. Borrowing the popular chat room concept from the Internet, we will provide news media with access to both real and virtual chat room sessions during the New Orleans meeting. With more than 9,000 research presentations, this is one of the year's largest and most significant scientific conferences. Reporters attending the meeting can gather with scientists in an informal setting in our Press Center in Room 206 of the Morial Convention Center. Scientists will summarize their research and field questions. Offsite reporters can enter a virtual version of this Chat Room over the Internet. In addition to seeing and hearing the real-world activity, offsite reporters can submit questions. Click here (http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=WPCP_008471&use_sec=true&sec_url_var=region1) for more information.

ACS Press Releases http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=CTP_006740&use_sec=true&sec_url_var=region1

General Chemistry Glossary http://antoine.frostburg.edu/chem/senese/101/glossary.shtml

For Wired Readers

Bytesize Science, a podcast for young listeners
http://feeds.feedburner.com/bytesizescience

The American Chemical Society (ACS) Office of Communications has launched Bytesize Science, an educational, entertaining podcast for young listeners. Bytesize Science translates cutting-edge scientific discoveries from ACS' 36 peer-reviewed journals into stories for young listeners about science, health, medicine, energy, food, and other topics. New installments of Bytesize Science are posted every Monday and available without charge.

Science Elements: ACS Science News Podcast
http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_SUPERARTICLE&node_id=1355&use_sec=false&sec_url_var=region1

The ACS Office of Communications is podcasting PressPac contents in order to make cutting-edge scientific discoveries from ACS journals available to a broad public audience at no charge. Science Elements includes selected content from ACS's prestigious suite of 36 peer-reviewed scientific journals and Chemical & Engineering News, ACS's weekly news magazine. Those journals, published by the world's largest scientific society, contain about 30,000 scientific reports from scientists around the world each year.

PressPac information is intended for your personal use in news gathering and reporting and should not be distributed to others. Anyone using advance PressPac information for stocks or securities dealing may be guilty of insider trading under the federal Securities Exchange Act of 1934.

###

The American Chemical Society -- the world's largest scientific society -- is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Summary: The American Chemical Society News Service Weekly Press Package with reports from 36 major peer-reviewed journals on chemistry, health, medicine, energy, environment, food, nanotechnology and other hot topics.

Keywords: Agriculture/Food; Business/Economics; Biology; Chemistry/Physics Materials Sciences; Earth Science; Medicine/Health; Technology/Engineering/Computer Science; Energy/Fuel.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.