[ Back to EurekAlert! ] Public release date: 12-Jun-2008
[ | E-mail Share Share ]

Contact: Mary Kohut
Press@plos.org
415-568-3457
Public Library of Science

An unexpected link between coronavirus replication and protein secretion in infected cells

Coronavirus replication is critically linked to two factors within the early secretory pathway, according to new findings by a team of Dutch researchers that are published June 13th in the open-access journal PLoS Pathogens.

Coronaviruses, a group including the well-known SARS virus, are the causative agents of many respiratory and enteric infections in humans and animals. As with all viruses, virtually every step of their infection cycle depends on host cellular factors. As the first, most crucial step after their penetration into cells, coronaviruses assemble huge RNA replication "factory" complexes in association with characteristic, newly induced double membrane vesicles. The cellular pathways hijacked by these plus-strand RNA viruses to create these "factories" have thus far not been elucidated.

The researchers, led by Cornelis A. M. de Haan, showed that RNA replication of mouse hepatitis coronavirus (MHV) was inhibited by a drug brefeldin A that disrupts the central station in the cell's secretory pathway, the Golgi complex. Consistently, depletion of both the cellular target of brefeldin A, a factor called GBF1, and its downstream target, ARF1, was also shown to negatively affect coronavirus infection.

The researchers conclude that "an intimate association exists between the early secretory pathway and MHV replication." They speculate that, while GBF1 and ARF1 are not involved in the formation of the viral replication structures, they probably play a key role in their maturation or functioning. As this work was limited to the mouse hepatitis coronavirus, an interesting next step would be to study the importance of GBF1 and ARF1 in the replication of other coronaviruses.

###

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.plospathogens.org/doi/ppat.1000088 (link will go live on Friday, June 13)

CITATION: Verheije MH, Raaben M, Mari M, te Lintelo EG, Reggiori F, et al. (2008) Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation. PLoS Pathog 4(6): e1000088. doi:10.1371/journal.ppat.1000088

CONTACT:

Dr. C.A.M. (Xander) de Haan
Virology Division
Department of Infectious Diseases & Immunology
Faculty of Veterinary Medicine
Utrecht University
Yalelaan 1
3584 CL Utrecht
The Netherlands
Tel: +31-30-2534195
Fax: +31-30-2536723
E-mail: c.a.m.dehaan@uu.nl

Disclaimer

This press release refers to an upcoming article in PLoS Pathogens. The release is provided by the article authors. Any opinions expressed in these releases or articles are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Pathogens

PLoS Pathogens (www.plospathogens.org) publishes outstanding original articles that significantly advance the understanding of pathogens and how they interact with their host organisms. All works published in PLoS Pathogens are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.