[ Back to EurekAlert! ] Public release date: 19-Jun-2008
[ | E-mail Share Share ]

Contact: Mary Kohut
Press@plos.org
415-568-3457
Public Library of Science

Researchers track Lyme disease spirochetes

Microbiologists at the University of Calgary have demonstrated the first direct visualization of the dissemination of Borrelia burgdorferi, the bacterium that causes Lyme disease. This real-time, three-dimensional look at spirochete dissemination in a living mammalian host is published June 20th in the open-access journal PLoS Pathogens.

Pathogenic spirochetes are a group of bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme disease. The mechanism by which they disseminate from the blood to target sites is unknown. Direct visualization of these bacteria may yield critical insight into resultant disease processes.

The team therefore set out to directly observe these bacteria at the single-cell level in a living host, using an engineered fluorescent strain of B. burgdorferi as an example bacterium. Using conventional and spinning disk confocal microscopy, the investigators were able to track the movement of the bacteria and the interaction of the bacteria with the vascular wall in mice. They found that vascular escape is a multi-stage process and that spirochete movement appears to play an integral role in dissemination from the blood to target tissue sites.

This use of high-resolution, 3D imaging to visualize the dissemination of a bacterial pathogen in vivo lays the groundwork for a better understanding of the mechanisms by which these and other bacteria disseminate throughout the body to cause disease.

###

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.plospathogens.org/doi/ppat.1000090 (link will go live on Friday, June 20)

CITATION: Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, et al. (2008) Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host. PLoS Pathog 4(6): e1000090. doi:10.1371/journal.ppat.1000090

CONTACT:

Jordanna Heller
Manager, Media Relations
Faculty of Medicine
University of Calgary
403.220.2431 (office)
medmedia@ucalgary.ca

Dr. George Chaconas
1-403-210-9692
chaconas@ucalgary.ca


Disclaimer

This press release refers to an upcoming article in PLoS Pathogens. The release is provided by journal staff. Any opinions expressed in these releases or articles are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Pathogens

PLoS Pathogens (www.plospathogens.org) publishes outstanding original articles that significantly advance the understanding of pathogens and how they interact with their host organisms. All works published in PLoS Pathogens are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.