[ Back to EurekAlert! ] Public release date: 27-Aug-2008
[ | E-mail Share Share ]

Contact: Cherry Lewis
Cherry.lewis@bristol.ac.uk
44-117-928-8086
University of Bristol

Why is Greenland covered in ice?

Only changes in carbon dioxide levels are able to explain the transition from the mostly ice-free Greenland of three million years ago, to the ice-covered Greenland of today

IMAGE: Computer models show that while (tectonic) uplift of the Rocky Mountains may have contributed to increased ice cover on Greenland, this change was small in comparison with the ice sheet...

Click here for more information.

There have been many reports in the media about the effects of global warming on the Greenland ice-sheet, but there is still great uncertainty as to why there is an ice-sheet there at all.

Reporting today (28 August) in the journal Nature, scientists at the University of Bristol and the University of Leeds show that only changes in atmospheric carbon dioxide are able to explain the transition from the mostly ice-free Greenland of three million years ago, to the ice-covered Greenland of today.

Understanding why the ice formed on Greenland three million years ago will help understand the possible response of the ice sheet to future climate change.

Dr Dan Lunt from the University of Bristol and funded by the British Antarctic Survey, explained: "Evidence shows that around three million years ago there was an increase in the amount of rock and debris deposited on the ocean floor around Greenland. These rocks could not have got there until icebergs started to form and could transport them, indicating that large amounts of ice on Greenland only began to form about three million years ago.

"Prior to that, Greenland was largely ice-free and probably covered in grass and forest. Furthermore, atmospheric carbon dioxide levels were relatively high. So the question we wanted to answer was why did Greenland become covered in an ice-sheet?"

There are several competing theories, ranging from changes in ocean circulation, the increasing height of the Rocky Mountains, changes in the Earth's orbit, and natural changes in atmospheric greenhouse gas concentrations. Using state-of-the-art computer climate and ice-sheet models, Lunt and colleagues decided to test which, if any, of these theories was the most credible.

While the results suggest that climatic shifts associated with changes in ocean circulation and tectonic uplift did affect the amount of ice cover, and that the ice waxed and waned with changes in the Earth's orbit, none of these changes were large enough to contribute significantly to the long-term growth of the Greenland ice sheet.

Instead, the new research suggests that the dominant cause of the Greenland glaciation was the fall from high atmospheric carbon dioxide levels to levels closer to that of pre-industrial times. Today concentrations are approaching the levels that existed while Greenland was mostly ice-free.

Dr Alan Haywood from the University of Leeds added: "So why did elevated atmospheric carbon dioxide concentrations fall to levels similar to the pre-industrial era? That is the million dollar question which researchers will no doubt be trying to answer during the next few years."

###

Notes to Editors:

A high resolution image can be downloaded from here: https://www.bris.ac.uk/fluff/u/inclel/F_qb6_P0jJDAYaKFGOn9SQxe/

Image caption: Computer models show that while (tectonic) uplift of the Rocky Mountains may have contributed to increased ice cover on Greenland, this change was small in comparison with the ice sheet caused by a decrease in carbon dioxide.

The paper: 'Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels', by Daniel J. Lunt, Gavin L. Foster, Alan M. Haywood, and Emma J. Stone. Nature, 28 August 2008, doi:10.1038/nature07223.

This work was carried out in the framework of the British Antarctic Survey Greenhouse to ice-house: Evolution of the Antarctic Cryosphere and Palaeoenvironment programme. Dan J.Lunt is funded by British Antarctic Survey and Research Councils UK fellowships. Gavin L. Foster is funded by a NERC research fellowship. Emma J Stone is funded by a NERC studentship.

The University of Bristol was founded in 1876 as University College, Bristol. It was the first higher education institution in England to admit women on an equal basis with men. The University is internationally distinguished, a world leader in research, a member of the Russell Group and of the Worldwide Universities Network. It has around 12,500 undergraduate and 3,500 postgraduate students and organises its academic affairs in six faculties with some 45 departments and 15 research centres.

In the 2001 Research Assessment Exercise, 15 of the University's units of assessment achieved the top grade of 5* and a further 21 were awarded grade 5. Thus 36 (78 per cent) of the 46 units of assessment were judged as world class or of international standing. Seventy-six per cent of the academic staff work in departments ranked at these levels. For further information, please see our website: www.bristol.ac.uk

British Antarctic Survey (BAS) is a world leader in research into global environmental issues. With an annual budget of around 45 million, five Antarctic Research Stations, two Royal Research Ships and five aircraft BAS undertakes an interdisciplinary research programme and plays an active and influential role in Antarctic affairs. BAS has joint research projects with over 40 UK universities and has more than 120 national and international collaborations. It is a component of the Natural Environment Research Council. More information about the work of the Survey can be found at: www.antarctica.ac.uk

The University of Leeds is one of the largest higher education institutions in the UK with more than 30,000 students from 130 countries. With a turnover of 450m, Leeds is one of the top ten research universities in the UK, and a member of the Russell Group of research-intensive universities. It was placed 80th in the 2007 Times Higher Educational Supplement's world universities league table and the University's vision is to secure a place among the world's top 50 by 2015. www.leeds.ac.uk

Issued by: Public Relations Office, Communications and Marketing Services, University of Bristol. Contact: Cherry Lewis, Research Communications Manager. Tel: 0117 928 8086, mob: 07729 421885, email: Cherry.lewis@bristol.ac.uk



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.