[ Back to EurekAlert! ] Public release date: 23-Dec-2008
[ | E-mail Share Share ]

Contact: Marie Jennings
mfj@stowers-institute.org
816-926-4015
Stowers Institute for Medical Research

Krumlauf Lab demonstrates modulation of gene expression by protein coding regions

A research team at the Stowers Institute has discovered how the expression of one of the Hox master control genes is regulated in a specific segment of the developing brain. The findings provide important insight into how and where the brain develops some of its unique and important structures.

The findings were posted to the online Early Edition of the Proceedings of the National Academy of Science today.

The team led by Robb Krumlauf and Leanne Wiedemann set out to understand the "instruction manual" for a Hox gene that tells the early brain which genes to turn on and in what order, to specify critical regions of the adult brain. Their studies discovered how expression of the key regulatory protein, encoded by the Hoxa2 gene, is controlled. Surprisingly, the DNA sequence that contains the instructions about when and where to express Hoxa2 in a segment of the developing brain overlaps with sequences that code for amino acids of the Hoxa2 protein.

"In the mammalian genome, sequences that encode proteins and those that control gene expression are usually separate from each other," explained Robb Krumlauf, Ph.D., Scientific Director. "Most approaches to the identification of DNA elements that control gene expression utilize methods that exclude protein coding domains. Our group has now discovered that protein coding regions can also play a role in modulating gene expression. This work has important implications for identifying the regulatory logic contained in mammalian genomes."

"Our findings provide important insight into the regulation of the formation of the anterior hindbrain," said Leanne Wiedemann, Ph.D., a co-investigator in the Krumlauf Lab and senior author on the publication. "Additionally, because we now understand that regulatory input from coding regions needs to be considered, our findings have broader implications in helping to design tests and interpret data from large-scale analyses of gene regulation."

Expanding on this work, their lab will continue to dissect the regulatory networks and integrate the genes that play a role in hindbrain development using evolutionary comparisons, bioinformatics approaches, and experimental analyses.

###

In addition to his appointment at the Stowers Institute, Dr. Krumlauf is a Professor in the Department of Anatomy and Cell Biology at the University of Kansas Medical Center and a Professor in the Department of Oral Biology at the University of Missouri Kansas City Dental School. Dr. Wiedemann is an Associate Professor in the Department of Pathology and Laboratory Medicine at the University of Kansas Medical Center. Learn more about this work at www.stowers-institute.org/labs/KrumlaufLab.asp.

About the Stowers Institute

Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing, treating, and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.