News Release

Prenatal meth exposure linked to abnormal brain development

Study author Dr. Linda Chang with University of Hawaii at Manoa's school of medicine

Peer-Reviewed Publication

University of Hawaii at Manoa

Dr. Linda Chang, University of Hawaii at Manoa

image: This is study author Dr. Linda Chang, John A. Burns School of Medicine, University of Hawaii at Manoa. view more 

Credit: JABSOM

ST. PAUL, Minn. – A first of its kind study examining the effects of methamphetamine use during pregnancy has found the drug appears to cause abnormal brain development in children. The research is published in the April 15, 2009, online issue of Neurology®, the medical journal of the American Academy of Neurology.

"Methamphetamine use is an increasing problem among women of childbearing age, leading to an increasing number of children with prenatal meth exposure," said study author Linda Chang, MD, with the John A. Burns School of Medicine, University of Hawai`i at Mānoa in Honolulu. "But until now, the effects of prenatal meth exposure on the developing brain of a child were little known."

For the study, brain scans were performed on 29 three- and four-year-old children whose mothers used meth while pregnant and 37 unexposed children of the same ages. The MRI scans used diffusion tensor imaging to help measure the diffusion of molecules in a child's brain, which can indicate abnormal microscopic brain structures that might reflect abnormal brain development.

The scans showed that children with prenatal meth exposure had differences in the white matter structure and maturation of their brains compared to unexposed children. The children with prenatal meth exposure had up to four percent lower diffusion of molecules in the white matter of their brains.

"Our findings suggest prenatal meth exposure accelerates brain development in an abnormal pattern," said Chang. "Such abnormal brain development may explain why some children with prenatal meth exposure reach developmental milestones later than others."

Studies have shown that prenatal meth exposure can lead to increased stress and lethargy and poorer quality of movement for infants.

"While we don't know how prenatal meth exposure may lead to lower brain diffusion, less diffusion of molecules in white matter typically reflects more compact axonal fibers in the brain," said Chang. "This is consistent with our prior findings of smaller subcortical structures in children with prenatal meth exposure, which is the portion of the brain immediately below the cerebral cortex."

Long-term studies are under way to determine if the brain differences found in children with prenatal exposure to meth will normalize with age.

###

The study was supported by the National Institute on Drug Abuse, the National Center for Research Resources, the National Institute of Neurological Disorders and Stroke and the Office of National Drug Control Policy.

The American Academy of Neurology, an association of more than 21,000 neurologists and neuroscience professionals, is dedicated to improving patient care through education and research. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as multiple sclerosis, restless legs syndrome, Alzheimer's disease, narcolepsy, and stroke.

For more information about the American Academy of Neurology, visit www.aan.com.

The University of Hawai`i at Mānoa serves approximately 20,000 students pursuing 225 different degrees. Coming from every Hawaiian island, every state in the nation, and more than 100 countries, UHM students matriculate in an enriching environment for the global exchange of ideas. For more information, visit http://manoa.hawaii.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.