[ Back to EurekAlert! ] Public release date: 29-Jun-2009
[ | E-mail Share Share ]

Contact: Charlotte Webber
charlotte.webber@biomedcentral.com
44-203-192-2129
BioMed Central

Birds with a nose for a difference

Avoidance of inbreeding is evident amongst humans, and has been demonstrated in some shorebirds, mice and sand lizards. Researchers writing in the open access journal BMC Evolutionary Biology now report that it also occurs in a strictly monogamous species of bird, suggesting that the black-legged kittiwake possesses the ability to choose partners with a very different genetic profile.

The study, led by Richard H. Wagner from the Konrad Lorenz Institute for Ethology of the Austrian Academy of Sciences, and Etienne Danchin from the University Paul Sabatier of Toulouse, and involving researchers from the Université Pierre et Marie Curie, the Alaska Science Center, and the University of Bern, tracked 10 genetic markers, microsatellite loci, to investigate whether kittiwakes avoid inbreeding by pairing with genetically distant mates, and whether inbreeding reduces the number of chicks they raised.

Most pairs avoid inbreeding more often than expected by chance, suggesting that kittiwakes can somehow tell who their relatives are in a large anonymous population. The minority of closely related pairs produced eggs that were less likely to hatch and chicks that were more likely to die. According to first author Hervé Mulard, "inbreeding is devastating in this population."

Second hatched chicks were particularly badly affected by this phenomenon. Whether because they were less able to fight off infections and parasites or because their parents neglected them, they grew more slowly and were even less likely to survive than their older siblings.

Other studies have shown that polygamous female birds seek out genetically distant partners for mating in order to give their offspring a better and healthier genetic profile. This study provides the first evidence of inbreeding avoidance in a strictly monogamous species, in which both parents contribute to rearing offspring, and divorce is rare.

The team is now studying whether similar to humans, birds might be able to detect a mate's genetic profile from their body odor. Mulard concludes, "this ability could serve strictly monogamous species well, as they may experience the highest selective pressure to choose genetically distant mates."

###

Notes to Editors

1. Evidence that pairing with genetically similar mates is maladaptive in a monogamous bird
Hervé Mulard, Etienne Danchin, Sandra L Talbot, Andrew M Ramey, Scott A Hatch, Joël F White, Fabrice Helfenstein and Richard H Wagner
BMC Evolutionary Biology (in press)

During embargo, article available here: http://www.biomedcentral.com/imedia/9897026432482360_article.pdf?random=724537

After the embargo, article available at journal website http://www.biomedcentral.com/bmcevolbiol/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication

2. BMC Evolutionary Biology is an open access journal publishing original peer-reviewed research articles in all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology. BMC Evolutionary Biology (ISSN 1471-2148) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, Zoological Record, Thomson Reuters (ISI) and Google Scholar. It has an impact factor of 4.09.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.