[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
23-Nov-2009

[ | E-mail ] Share Share

Contact: Jason Bardi
jbardi@aip.org
301-209-3091
American Institute of Physics
@AIP_Publishing

A mechanical model of vocalization

Work aimed at fighting voice disorders to be presented at Fluid Dynamics Conference in Minneapolis, Nov. 22-24, 2009

WASHINGTON, D.C. November 18, 2009 -- When people speak, sing, or shout, they produce sound by pushing air over their vocal folds -- bits of muscle and tissue that manipulate the air flow and vibrate within it. When someone has polyps or some other problem with their vocal folds, the airflow can be altered, affecting the sound production.

"Voice disorders affect 30 percent of the general population and up to 60 percent of educators," says Plesniak. "The objective of our work is to develop a detailed understanding of the phonation process, which will enable the development of computational models."

Wanting to better characterize the physics of this process, George Washington University professor Michael Plesniak and his doctoral student Byron Erath teamed up with speech pathologists a few years ago, while Plesniak was at Purdue University, to investigate the velocity field and flow structures in the airflow that occur when a person speaks.

Plesniak and his students constructed a mechanical model of the vocal folds that had motorized, programmable components that can alter their shape and motion in various ways to mimic vocal folds. By placing this model in a wind tunnel, they examine normal vocalization and common pathologies like the formation of polyps and cysts.

An important feature of the model, says Plesniak, is that it is seven-and-a-half times larger than the actual physiology, which allows the dynamics to be studied in greater detail. The ultimate goal, he adds, is to create tools to help surgeons make preoperative assessments of how a vocal tract surgery will affect an individual's voice.

The talk "The development of supraglottal flow structures during speech" by Byron Erath and Michael Plesniak is at 4:14 p.m. on Monday, November 23, 2009.

###

Abstract: http://meetings.aps.org/Meeting/DFD09/Event/111753

MORE MEETING INFORMATION
The 62nd Annual DFD Meeting will be held at the Minneapolis Convention Center in downtown Minneapolis. All meeting information, including directions to the Convention Center is at: http://www.dfd2009.umn.edu/

PRESS REGISTRATION
Credentialed full-time journalist and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091).

USEFUL LINKS
Main meeting Web site: http://meetings.aps.org/Meeting/DFD09/Content/1629
Searchable form: http://meetings.aps.org/Meeting/DFD09/SearchAbstract
Local Conference Meeting Website: http://www.dfd2009.umn.edu/
PDF of Meeting Abstracts: http://flux.aps.org/meetings/YR09/DFD09/all_DFD09.pdf
Division of Fluid Dynamics page: http://www.aps.org/units/dfd/
Virtual Press Room: SEE BELOW

VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room will contain tips on dozens of stories as well as stunning graphics and lay-language papers detailing some of the most interesting results at the meeting. Lay-language papers are roughly 500 word summaries written for a general audience by the authors of individual presentations with accompanying graphics and multimedia files. The Virtual Press Room will serve as starting points for journalists who are interested in covering the meeting but cannot attend in person. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Currently, the Division of Fluid Dynamics Virtual Press Room contains information related to the 2008 meeting. In mid-November, the Virtual Press Room will be updated for this year's meeting, and another news release will be sent out at that time.

ONSITE WORKSPACE FOR REPORTERS
A reserved workspace with wireless internet connections will be available for use by reporters. It will be located in the meeting exhibition hall (Ballroom AB) at the Minneapolis Convention Center on Sunday and Monday from 8:00 a.m. to 5:00 p.m. and on Tuesday from 8:00 a.m. to noon. Press announcements and other news will be available in the Virtual Press Room.

GALLERY OF FLUID MOTION
Every year, the APS Division of Fluid Dynamics hosts posters and videos that show stunning images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2010, and will appear in the annual Gallery of Fluid Motion article in the September 2010 issue of the journal Physics of Fluids.

This year, selected entries from the 27th Annual Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

ABOUT THE APS DIVISION OF FLUID DYNAMICS
The Division of Fluid Dynamics of the American Physical Society exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. See: http://www.aps.org/units/dfd/



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.