[ Back to EurekAlert! ] Public release date: 21-Dec-2009
[ | E-mail Share Share ]

Contact: Cody Mooneyhan
cmooneyhan@faseb.org
301-634-7104
Federation of American Societies for Experimental Biology

Scientists take important step toward the proverbial fountain of youth

New research in the FASEB Journal shows for the first time that reducing caloric intake, specifically in the form of glucose, extends the lifespan of human cells

Going back for a second dessert after your holiday meal might not be the best strategy for living a long, cancer-free life say researchers from the University of Alabama at Birmingham. That's because they've shown exactly how restricted calorie diets—specifically in the form of restricted glucose—help human cells live longer. This discovery, published online in The FASEB Journal (http://www.fasebj.org) could help lead to drugs and treatments that slow human aging and prevent cancer.

"Our hope is that the discovery that reduced calories extends the lifespan of normal human cells will lead to further discoveries of the causes for these effects in different cell types and facilitate the development of novel approaches to extend the lifespan of humans," said Trygve Tollefsbol, Ph.D., a researcher involved in the work from the Center for Aging and Comprehensive Cancer Center at the University of Alabama at Birmingham. "We would also hope for these studies to lead to improved prevention of cancer as well as many other age-related diseases through controlling calorie intake of specific cell types."

To make this discovery, Tollefsbol and colleagues used normal human lung cells and precancerous human lung cells that were at the beginning stages of cancer formation. Both sets of cells were grown in the laboratory and received either normal or reduced levels of glucose (sugar). As the cells grew over a period of a few weeks, the researchers monitored their ability to divide, and kept track of how many cells survived over this period. They found that the normal cells lived longer, and many of the precancerous cells died, when given less glucose. Gene activity was also measured under these same conditions. The reduced glucose caused normal cells to have a higher activity of the gene that dictates the level of telomerase, an enzyme that extends their lifespan and lower activity of a gene (p16) that slows their growth. Epigenetic effects (effects not due to gene mutations) were found to be a major cause in changing the activity of these genes as they reacted to decreased glucose levels.

"Western science is on the cusp of developing a pharmaceutical fountain of youth" said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This study confirms that we are on the path to persuading human cells to let us to live longer, and perhaps cancer-free, lives."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fasebjournalreaders.htm. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information. FASEB comprises 22 nonprofit societies with more than 80,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB advances health and welfare by promoting progress and education in biological and biomedical sciences through service to its member societies and collaborative advocacy.

Details: Yuanyuan Li, Liang Liu, and Trygve O. Tollefsbol. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J. doi:10.1096/fj.09-149328 http://www.fasebj.org/cgi/content/abstract/fj.09-149328v1



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.