Public Release:  More than fish bait: Worms unlock secrets to new epilepsy treatments

Research in the journal Genetics identifies potential drug development target for epilepsy seizures

Genetics Society of America

A team of scientists from The University of Alabama used worms to reel in information that they hope will lead to a greater understanding of cellular mechanisms that may be exploited to treat epilepsy. In a new research report in the journal GENETICS (http://www.genetics.org), the researchers explain how the transparent roundworm, C. elegans, helped them identify key "molecular switches" that control the transport of a molecule (gamma-aminobutyric acid or "GABA") that if manipulated within our cells, might prevent the onset of seizures.

"It is our hope that this work serves to accelerate the path toward the identification of genetic factors that cause a susceptibility to epilepsy," said Guy A. Caldwell, Ph.D., co-author of the study from the Department of Biological Sciences at The University of Alabama in Tuscaloosa. "Simultaneously, this work has the potential to uncover new avenues toward therapeutic development to control or prevent seizures in the future."

To make this finding, the researchers conducted experiments involving drugs known to affect neuronal activity in combination with DNA mutations in genetic factors shared between C. elegans and humans. Changes in the worm's neuronal activity led to repetitive convulsions believed to be similar to those experienced in epilepsy. These convulsions were observed under a microscope, and videos of those events were used to evaluate the severity of the neuronal changes. At the same time, the researchers used a green fluorescent protein to "tag" or "label" the cellular locale and delivery of GABA in neurons. This tagging allowed the researchers to see the specific genetic factors that led to abnormal movement of GABA in neurons as they coincided with worm seizures and to make appropriate comparisons with worms from the control group.

"Although much more work must be done before new drugs can be developed for people, these findings could offer hope to people with this devastating and frustrating condition," said Mark Johnston, Editor-in-Chief of GENETICS. "It may be hard to believe, but the cellular processes that occur in these worms are likely to be similar to those in humans. This work has the potential to significantly advance our understanding of what causes seizures in people, and could point the way to a remedy."

###

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Article Details: Cody J. Locke, Bwarenaba B. Kautu, Kalen P. Berry, S. Kyle Lee, Kim A. Caldwell, and Guy A. Caldwell. (2009). Pharmacogenetic Analysis Reveals a Post-Developmental Role for Rac GTPases in Caenorhabditis elegans GABAergic Neurotransmission. GENETICS. doi: 10.1534/genetics.109.106880

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.