News Release

Differences in language circuits in the brain linked to dyslexia

Peer-Reviewed Publication

Elsevier

Milan, Italy, 10 May 2010 – Children with dyslexia often struggle with reading, writing, and spelling, despite getting an appropriate education and demonstrating intellectual ability in other areas. New neurological research has found that these children's difficulties with written language may be linked to structural differences within an important information highway in the brain known to play a role in oral language. The findings are published in the June 2010 issue of Elsevier's Cortex (http://www.elsevier.com/locate/cortex).

Vanderbilt University researchers Sheryl Rimrodt and Laurie Cutting and colleagues at Johns Hopkins University and Kennedy Krieger Institute used an emerging MRI technique, called diffusion tensor imaging (DTI), to discover evidence linking dyslexia to structural differences in an important bundle of white matter in the left-hemisphere language network. White matter is made up of fibers that can be thought of as the wiring that allows communication between brain cells; the left-hemisphere language network is made up of bundles of these fibres and contains branches that extend from the back of the brain (including vision cells) to the front parts that are responsible for articulation and speech. "When you are reading, you are essentially saying things out loud in your head", said Cutting. "If you have decreased integrity of white matter in this area, the front and back part of your brain are not talking to one another. This would affect reading, because you need both to act as a cohesive unit."

Rimrodt and Cutting used the DTI technique to map the course of an important white matter bundle in this network and discovered that it ran through a frontal brain region known to be less well organised in the dyslexic brain. They also found that fibers in that frontal part of the tract were oriented differently in dyslexia. Rimrodt said, "To find a convergence of MRI evidence that goes beyond identifying a region of the brain that differs in dyslexia to linking that to an identifiable structure and beginning to explore physical characteristics of the region is very exciting. It brings us a little bit closer to understanding how dyslexia happens."

###

Rimrodt is assistant professor of developmental medicine and Cutting is Patricia and Rodes Hart Chair at Peabody College at Vanderbilt. The researchers completed the work at the Kennedy Krieger Institute with their colleagues there before moving to Vanderbilt. The research was funded by the Johns Hopkins School of Medicine General Clinical Research Center, the Kennedy Krieger Institute's Learning Disability Research Center and F.M. Kirby Research Center for Functional Brain Imaging, the National Institute for Neurological Disorders, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Notes to Editors:

The article is "White matter microstructural differences linked to left perisylvian language network in children with dyslexia" by Sheryl L. Rimrodt, Daniel J. Peterson, Martha B. Denckla, Walter E. Kaufmann and Laurie E. Cutting, and appears in Cortex, Volume 46, Issue 6 (June 2010), published by Elsevier in Italy. Full text of the article featured above is available to members of the media upon request. Please contact the Elsevier press office, newsroom@elsevier.com. To schedule an interview, contact Dr Laurie Cutting laurie.cutting@vanderbilt.edu.

About Cortex

Cortex is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi. The Editor in-chief of Cortex is Sergio Della Sala, Professor of Human Cognitive Neuroscience at the University of Edinburgh. Fax: 0131 6513230, e-mail: cortex@ed.ac.uk. Cortex is available online at http://www.sciencedirect.com/science/journal/00109452

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including the Lancet (www.thelancet.com) and Cell (www.cell.com), and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Reaxys (www.reaxys.com), MD Consult (www.mdconsult.com) and Nursing Consult (www.nursingconsult.com), which enhance the productivity of science and health professionals, and the SciVal suite (www.scival.com) and MEDai's Pinpoint Review (www.medai.com), which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier (www.elsevier.com) employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading publisher and information provider. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.