News Release

Physicists build inexpensive land mine detection system using off-the-shelf components

Peer-Reviewed Publication

American Institute of Physics

This release is available in Chinese.

College Park, MD (June 16, 2010) -- Anyone who is an online shopper and humanitarian might find this research project appealing. Physics professor John Scales is working on a low-cost, human-focused, high technology effort to stop the devastation of unexploded buried land mines with a novel acoustical/microwave detection system. The work is described in the Journal of Applied Physics, which is published by the American Institute of Physics (AIP).

In a project sponsored by the U.S. Army Research Laboratory's Army Research Office, Scales, his collaborator Martin Smith, and students at the Colorado School of Mines have built a new system using microwave-based sensors to detect vibrations the ground (or other structures) remotely.

Cost is key. Made from off-the-shelf parts -- including online auction deals -- the system costs about $10,000. This compares to laser-based Doppler remote detection systems that sells for upwards of $1 million. Microwaves have many other advantages including that they can see through foliage.

"Land mines are an enormous problem around the world for both military personnel and civilians," explains Scales. "We've developed an ultrasound technique to first shake the ground and then a microwave component to detect ground motion that indicates location of the land mine. We hope that the two components together enable us to detect the land mines in a safe fashion, from a distance."

Many other applications exist for remote vibration sensing, including monitoring the structural integrity of buildings, bridges, and dams. Multiple approaches exist for land mine detection, from trained dogs and rats that detect chemicals used in the explosives to biosensor plants that change colors in response to soil conditions altered by mines.

But there's still a pressing need for innovation.

"The reason so many people are working on this problem from so many angles," says Scales, "is there is no one scheme that works well all the time. You need an arsenal of tools."

###

The article, "A low-cost millimeter wave interferometer for remote vibration sensing" by John A. Scales et al will appear in the Journal of Applied Physics. See: http://jap.aip.org/

Journalists may request a free PDF of this article by contacting jbardi@aip.org.

ABOUT JOURNAL OF APPLIED PHYSICS

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.