News Release

Noninvasive probing of geological core samples

Peer-Reviewed Publication

American Institute of Physics

Directionality of the Coil-generated Magnetic Fields

image: The directionality of the coil-generated magnetic fields is shown, along with the induced currents (influenced by the directional conductivity) when the transmitter coils for measuring the axial Z-directional conductivity (middle) and for measuring the X- and Y-directional conductivity (right) are energized. view more 

Credit: No Credit is given

College Park, MD (July 13, 2010) -- Oil and natural gas companies rely upon geological core analyses to help them understand and evaluate oil and gas reserves. A rock sample can reveal myriad details about a geological structure's formation, content, and history.

Conductivity, a material's ability to carry an electrical current, is one of the most useful measurements of core samples. The conductivity of a geological formation depends on the direction of measurement, so it's considered "anisotropic."

"Anisotropy is usually the result of many thin layers of oil-bearing sandstone rocks sandwiched between thin shale layers, which form a laminate structure that may be tens to thousands of feet thick and contain a large amount of oil," explains John Kickhofel, a research scientist. In anisotropic layers of the Earth, the conductivity in one direction is different from that of others.

Tools to measure a core sample's electrical anisotropy have been sadly lacking, says Kickhofel. To solve this problem, he and colleagues at the company Schlumberger found inspiration in a type of logging technology currently used by the modern oil industry. They created a device capable of noninvasively measuring electrical conductivity -- a device they describe in the journal Review of Scientific Instruments, which is published by the American Institute of Physics.

"We designed a probe that uses a core from the formations and measures its electrical anisotropy without destroying the core," Kickhofel says. "This device can make continuous measurements on cores that are hundreds or thousands of feet long."

Cores are valuable because they provide firsthand information about the structure and nature of rock layers and need to be preserved for future reference. "It's very important to preserve the cores, and the new device provides a way to do this. We can't overstate the value of such a measurement to the oil industry in an era when most fields are in decline -- yet the world's demand for oil and gas continues to skyrocket," adds Kickhofel.

###

The article "Inductive conductivity tensor measurement for flowline or material samples" by John L. Kickhofel, Amine Mohamide, Jonatan Jalfin, Joshua Gibson, Philip Thomas, Gerald Minerbo, Hanming Wang, and Dean M. Homan was published online in the journal Review of Scientific Instruments on July 2, 2010. See: http://link.aip.org/link/RSINAK/v81/i7/p075102/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

NOTE: An image is available for journalists. Please contact jbardi@aip.org

Image caption: The directionality of the coil-generated magnetic fields is shown, along with the induced currents (influenced by the directional conductivity) when the transmitter coils for measuring the axial Z-directional conductivity (middle) and for measuring the X- and Y-directional conductivity (right) are energized.

ABOUT REVIEW OF SCIENTIFIC INSTRUMENTS

Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See: http://rsi.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.