Public Release:  Quantum entanglement in photosynthesis and evolution

American Institute of Physics

College Park, MD (July 20, 2010) -- Recently, academic debate has been swirling around the existence of unusual quantum mechanical effects in the most ubiquitous of phenomena, including photosynthesis, the process by which organisms convert light into chemical energy. In particular, physicists have suggested that entanglement (the quantum interconnection of two or more objects like photons, electrons, or atoms that are separated in physical space) could be occurring in the photosynthetic complexes of plants, particularly in the pigment molecules, or chromophores. The quantum effects may explain why the structures are so efficient at converting light into energy -- doing so at 95 percent or more.

In a paper in The Journal of Chemical Physics, which is published by the American Institute of Physics, these ideas are put to the test in a novel computer simulation of energy transport in a photosynthetic reaction center. Using the simulation, professor Shaul Mukamel and senior research associate Darius Abramavicius at the University of California, Irvine show that long-lived quantum coherence is an "essential ingredient for quantum information storage and manipulation," according to Mukamel. It is possible between chromophores even at room temperature, he says, and it "can strongly affect the light-harvesting efficiency."

If the existence of such effects can be substantiated experimentally, he says, this understanding of quantum energy transfer and charge separation pathways may help the design of solar cells that take their inspiration from nature.


The article, "Quantum oscillatory exciton migration in photosynthetic reaction centers" by Darius Abramavicius and Shaul Mukamel will appear in The Journal of Chemical Physics. See:

Journalists may request a free PDF of this article by contacting

NOTE: An image is available for journalists. Please contact

Image Caption: Artistic depiction of pathways with a photosynthetic complex in the background.


The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See:


The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.