News Release

Salmon in hot water

Peer-Reviewed Publication

BMC (BioMed Central)

Rearing juvenile salmon at the relatively high temperature of 16°C causes skeletal deformities in the fish. Researchers writing in the open access journal BMC Physiology investigated both the magnitude and mechanisms of this effect, which occurs when salmon farmers use warmed water to increase fish growth rates.

Harald Takle worked with a team of researchers from NOFIMA (the Norwegian Institute of Food, Fisheries and Aquaculture Research), Norway, to carry out the studies. He said, "The data presented here indicate that both production of bone and cartilage were disrupted when promoting fast growth using elevated temperature. It is very likely that higher temperatures result in the increased rate of deformities observed in the 16°C group".

The researchers reared 400 fish in 10°C water and another 400 at 16°C. The fish in the 16°C water grew faster, but 28% were found to show some signs of skeletal deformity, compared to 8% of the fish reared in the cooler tank. Takle said, "Our results strongly indicate that temperature induced fast growth is severely affecting gene transcription in osteoblasts and chondrocyte bone cells, leading to a change in the tissue structure and composition".

In a second related study, fish with vertebral deformities were studied in detail. Takle said, "The deformity process involves molecular regulation and cellular changes similar to those found in mammalian intervertebral disc degeneration".

###

Notes to Editors

1. Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar)
Elisabeth Ytteborg, Grete Baeverfjord, Jacob Torgersen, Kirsti Hjelde and Harald Takle
BMC Physiology (in press)

During embargo, article available here: http://www.biomedcentral.com/imedia/4540486142867515_article.pdf?random=441511
After the embargo, article available at the journal website: http://www.biomedcentral.com/bmcphysiol/

Morphological and molecular characterization of developing vertebral fusions using a teleost model
Elisabeth Ytteborg, Jacob Torgersen, Grete Baeverfjord and Harald Takle
BMC Physiology (in press)

During embargo, article available here: http://www.biomedcentral.com/imedia/1670753381361053_article.pdf?random=195351
After the embargo, article available at the journal website: http://www.biomedcentral.com/bmcphysiol/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citations and URLs available on request at press@biomedcentral.com on the day of publication.

2. BMC Physiology is an open access journal publishing original peer-reviewed research articles in cellular, tissue-level, organismal, functional, and developmental aspects of physiological processes. BMC Physiology (ISSN 1472-6793) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, CABI and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.