Public Release:  Off-the-shelf dyes improve solar cells

Best blend included a dye used in canned peas

American Institute of Physics

College Park, MD (August 31, 2010) -- Like most technologies, work on solar devices has proceeded in generational waves. First came bulk silicon-based solar cells built with techniques that borrowed heavily from those used to make computer chips. Next came work on thin films of materials specifically tailored to harvest the sun's energy, but still more or less borrowed from the realm of microelectronics manufacturing. Then came the third generation, described by one researcher and blogger as "the wild west," which among other objectives aims to build inexpensive next-generation solar cells by relying on decidedly low-tech wet chemistry.

In a paper in the Journal of Renewable and Sustainable Energy, which is published by the American Institute of Physics, Ram Mehra of Sharda University in Greater Noida, India, reports success in boosting the ability of zinc oxide solar cells to absorb visible light simply by applying a blended mixture of various off-the-shelf dyes commonly used in food and medical industries. Working with colleagues from the University of Delhi, Mehra doused cells with a variety of dyes in a soak-then-dry procedure not unlike that used to color a tee-shirt in a home washing machine.

The best result came from a blend of dyes -- including Fast Green, a food dye used in canned vegetables, jellies and sauces and Rose Bengal, used in diagnostic eye drops to stain damaged cells and identify eye injuries -- that together boosted the efficiency of zinc oxide solar cells by nearly eight percent. Mehra and colleagues say that in the future, specific dye blends might be formulated to make solar cells targeted for specific uses, much as custom mixing of dyes today yields products as diverse as adhesives, cosmetics, and perfumes. They write that "by changing composition of the mixture, its properties will change to be more or less suited to a particular useful application."

###

Mehra's work on so-called dye-sensitized solar cells is funded by India's Ministry of New and Renewable Energy.

The article "Development of a dye with broadband absorbance in visible spectrum for an efficient dye-sensitized solar cell" by Seema Rani, P. K. Shishodia, and R. M. Mehra appears in the Journal of Renewable and Sustainable Energy. See: http://link.aip.org/link/JRSEBH/v2/i4/p043103/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

Journal of Renewable and Sustainable Energy

Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal published by the American Institute of Physics (AIP) that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. As an electronic-only, Web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. See: http://jrse.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.