[ Back to EurekAlert! ] Public release date: 21-Sep-2010
[ | E-mail Share Share ]

Contact: Jason Bardi
jbardi@aip.org
301-209-3091
American Institute of Physics

Ultrashort laser ablation enables novel metal films

Washington, D.C. (September 21, 2010) -- Laser ablation is well known in medical applications like dermatology and dentistry, and for more than a decade it has been used to vaporize materials that are difficult to evaporate for high-tech applications like deposition of superconductors. Now researchers in the Journal of Applied Physics, which is published by the American Institute of Physics have studied the properties of femtosecond laser ablation plumes to better understand how to apply them to specialized films.

Salvatore Amoruso at University of Naples, Italy and colleagues examined the expansion dynamics of various ultrashort laser ablation plumes and the basic properties of the complicated ablation process in which some material is vaporized in the form of plasma and some in the form of nanoparticles. The team studied the shapes of both the plasma and nanoparticle plumes, which are important for pulsed laser deposition of nanoparticle films.

Nanoparticle silver and gold films made by pulsed laser deposition are useful for optical applications such as surface-enhanced Raman spectroscopy. Nanoparticle films of transition metals such as iron, nickel, or cobalt may be used to catalyse the growth of carbon nanotubes.

"We can understand our results in terms of some existing models of plume expansion," says co-author James Lunney at Trinity College Dublin, Ireland. "We also see evidence that the pressure in the plasma plume has an influence on the expansion of the nanoparticle plume. Analysis of these expansion dynamics may also improve our physical understanding of the overall ablation process."

###

The article, "Dynamics of the plumes produced by ultrafast laser ablation of metals" by Salvatore Amoruso (Universita di Napoli Federico II), Tony Donnelly, James G. Lunney (Trinity College Dublin), Riccardo Bruzzese (University degli Studi di Napoli Federico II), Xuan Wang (University di Napoli Federico II) and Xiaochang Ni (Tianjin University) appears in the Journal of Applied Physics. http://link.aip.org/link/japiau/v108/i4/p043309/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT JOURNAL OF APPLIED PHYSICS

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.