[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
22-Feb-2011

[ | E-mail ] Share Share

Contact: Kim Newman
sciencenews@einstein.yu.edu
718-430-3101
Albert Einstein College of Medicine
@EinsteinMed

Vaccine made with synthetic gene protects against deadly pneumonia

Triggers protective immune response while preventing fatal inflammation

VIDEO: Liise-anne Pirofski, M.D., discusses an experimental vaccine that she developed which appears to protect against an increasingly common and particularly deadly form of pneumococcal pneumonia. Dr. Pirofski is chief of...

Click here for more information.

February 22, 2011 -- (BRONX, NY) -- Researchers at Albert Einstein College of Medicine of Yeshiva University have developed an experimental vaccine that appears to protect against an increasingly common and particularly deadly form of pneumococcal pneumonia. Details of the new vaccine, which was tested in an animal model, are reported in a paper published today in the Journal of Infectious Diseases.

Pneumococcal pneumonia can occur when the lungs are infected with the bacterial species Streptococcus pneumoniae (also known as pneumococcus). "Like many microbes that cause pneumonia, pneumococcus is spread from person to person through coughing or sneezing," said principal investigator Liise-anne Pirofski, M.D., professor of medicine and of microbiology & immunology and the Selma and Dr. Jacques Mitrani Chair in Biomedical Research. Symptoms include cough, fever, shortness of breath, and chest pain.

The National Foundation for Infectious Diseases estimates that 175,000 people are hospitalized with pneumococcal pneumonia in the United States each year. In addition to pneumonia, pneumococcus causes 34,500 bloodstream infections and 2,200 cases of meningitis annually. It is responsible for more deaths in the United States - 4,800 a year - than any other vaccine-preventable disease. It poses a particular problem in the developing world, where it is estimated to cause more than one million deaths in children each year, according to the World Health Organization.

A pediatric vaccine has dramatically reduced the incidence of pneumococcal disease in children and adults, both by protecting vaccinated children and by reducing person-to-person transmission of the bacterium to others - a phenomenon known as herd immunity.

"The pediatric vaccine is a great victory for modern medicine, but it doesn't cover all strains of disease-causing pneumococcus - some of which have recently emerged and are very virulent," said Dr. Pirofski. "This problem, coupled with the fact that herd immunity doesn't protect immunocompromised patients as effectively as people with normal immunity, led us to look for a better vaccine."

The researchers focused on developing a vaccine against serotype 3 - a pneumococcal strain that was not included in the pediatric vaccine used for the past decade and that has emerged as a cause of serious pneumonia in adults and children. Serotype 3 can trigger inflammation so overwhelming that it can result in very severe disease or even death.

The goal of this study was to produce a vaccine consisting of a live, attenuated (weakened) version of serotype 3 S. pneumoniae. To create their vaccine, the researchers focused on the serotype 3 gene that codes for pneumolysin, a toxin produced by all pneumococcal strains. The researchers replaced this gene with a synthetic version that they hoped would reduce the amount of toxin produced.

"Our idea was to design a live vaccine that would stimulate the immune system sufficiently to ward off disease but wouldn't lead to the severely damaging inflammatory response that this strain can cause," said lead author J. Robert Coleman, Ph.D., a postdoctoral fellow in microbiology & immunology at Einstein, who helped develop the gene-modification technique, known as synthetic gene customization, while a graduate student at Stony Brook University.

"The novelty of this approach lies in the fact that the gene's expression would be reduced, but not eliminated," Dr. Coleman added. "Previous approaches to genetic regulation of virulence relied on knocking out genes, which eliminates their expression completely."

Altering the pneumolysin gene in the seroptype 3 bacteria resulted in less pneumolysin toxin produced in vitro. When mice were injected with either attenuated or unattenuated serotype 3 bacteria, mice receiving the attenuated strain developed an inflammatory response much weaker than was observed in mice receiving the unattenuated serotype 3 strain. Most important, of the five mice injected with the attenuated strain, four survived a subsequent challenge from the highly virulent unattenuated serotype 3 strain, which was lethal in five of five unvaccinated, control mice.

This method of reducing gene expression had been used for viral pathogens, but this is the first time that gene customization has successfully controlled virulence in bacteria. The study's findings could potentially lead to pneumococcal vaccines based on weakened strains, and the Einstein researchers are now investigating whether they can reduce the expression of other genes associated with pneumococcal virulence.

###

The paper, "Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias," was published in the February 22 online edition of the Journal of Infectious Diseases. Co-authors include Masahide Yano at Einstein; Dimitris Papamichail at the University of Miami, Miami; and María del Mar García-Suárez, at Biozell Diagnostico Molecular SL, Asturias, Spain.

This research was funded by the National Institutes of Health and the National Institute of Allergy and Infectious Diseases.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 722 M.D. students, 243 Ph.D. students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows. The College of Medicine has 2,775 fulltime faculty members located on the main campus and at its clinical affiliates. In 2009, Einstein received more than $155 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island - which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein - the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.