News Release

Physicists move closer to efficient single-photon sources

Peer-Reviewed Publication

American Institute of Physics

Washington, D.C. (March 16, 2011) -- A team of physicists in the United Kingdom has taken a giant step toward realizing efficient single-photon sources, which are expected to enable much-coveted completely secure optical communications, also known as "quantum cryptography." The team presents its findings in Applied Physics Letters, a journal published by the American Institute of Physics.

Fluorescent "defect centers" in diamond act like atomic-scale light sources and are trapped in a transparent material that's large enough to be picked up manually. They don't need to be kept at super cold cryogenic temperatures or trapped in large electromagnetic fields to be stable—unlike quantum dots or trapped atoms.

This makes them strong contenders for use as sources of single photons (the quantum light particle) in provably secure quantum cryptography schemes, explains J. P. Hadden, a Ph.D. candidate in the Centre for Quantum Photonics, Department of Electrical and Electronic Engineering & H. H. Wills Physics Laboratory at the University of Bristol.

"Defect centers could also be used as building blocks for 'solid-state quantum computers,' which would use quantum effects to solve problems that are not efficiently solvable with current computer technology," Hadden says.

To fulfill the potential of diamond defect centers, it's essential that the light be collected efficiently from the diamond material. But this collection efficiency is dramatically reduced by reflection and refraction of light passing through the diamond-air interface.

"We managed to show an improvement in the brightness of these defect centers of up to ten times by etching hemispherical 'solid immersion lenses' into the diamond," notes Hadden. "This is an important result, showing how nanofabrication techniques can complement and enhance quantum technologies, and opens the door to diamond-defect-center-based implementations of quantum cryptography and quantum computation."

More recently, Hadden and colleagues developed a technique that allows them to reliably etch these structures over previously characterized defect centers to a precision of about 100 nanometers — another significant step toward a practical and repeatable combination of nanotechnology and quantum optics.

###

ABOUT APPLIED PHYSICS LETTERS

Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.