Public Release:  Researchers in France and Austria find novel role for calcium channels in pacemaker cell function

American Institute of Physics

WASHINGTON, D.C. (March 9, 2011) -- Pacemaker cells in the sinoatrial node control heart rate, but what controls the ticking of these pacemaker cells? New research by Angelo Torrente and his colleagues of the M.E. Mangoni group's, reveals, for the first time, a critical functional interaction between Cav1.3 calcium ion (Ca2+) channels and ryanodine-receptor (RyR) mediated Ca2+ signaling.

The study also sheds light on a long-standing debate regarding the relative contributions of the 'funny current' generated by ion channels and the RyR dependent spontaneous diastolic Ca2+ release theory in determining heart rate.

The investigation by the research team compared pacemaker cells in normal mice with mutants that lacked the L-type Cav1.3 channels to contrast how they handled calcium. They found that the absence of Cav1.3 channels in sinoatrial node (SAN) cells reduced the frequency of Ca2+ transients, which determine the rate of cardiac muscle contraction. The Cav1.3 channels were also found to be important regulators of ryanodine-receptor dependent local calcium release in the diastolic pacemaker phase. Overall, their results show that local calcium release in SAN cells is tightly controlled by the Cav1.3 channels.

Defects in calcium channels controlling heart muscle function are known to cause heart failure, and this study reveals that Cav1.3 mutant mice also suffer from bradycardia and other cardiac arrhythmias.

"Our results clarify the role of Cav1.3 channels in pacemaker generation, and are a step towards using it as a target for drug therapy to treat heart dysfunction related to the sinoatrial node", says A. Torrente of CNRS in Montpellier, France, who was the lead author on the study.

Not only Cav1.3 channels are critical to the heart pacemaker cell function, they appear to be important to several other cellular mechanisms as well. In both humans and mice, Cav1.3 mutations have been linked to sinoatrial node dysfunction and deafness (or SANDD) syndrome. Cav1.3 channels are believed to play a role in pancreatic β-cell stimulation, and they may also serve as pacemaker channels in the central nervous system, playing a pathophysiological role in Parkinson's disease.

"A better understanding of these channels in SAN could help us to comprehend the mechanism of calcium release in many other tissues and disease conditions as well", says Torrente.

###

NOTE TO EDITORS: An image is available to accompany this story. Visit URL

IMAGE CAPTION: A mouse pacemaker cell initiates local Ca2+ releases in the diastolic phase. Red spots are the regions with maximal [Ca2+]i released.

This project was supported by funding from the European Union Research Programme (CavNet project) and the French National Agency for Research

The presentation, "CAV1.3 L-TYPE CALCIUM CHANNELS-MEDIATED RYANODINE RECEPTOR DEPENDENT CALCIUM RELEASE CONTROLS HEART RATE" is at 10:30 a.m. on Wednesday, March 9, 2011 in Hall C of the Baltimore Convention Center. ABSTRACT: http://tinyurl.com/4pkjxgk

MORE MEETING INFORMATION

Each year, the Biophysical Society Annual Meeting brings together more than 6,000 scientists and hosts more than 4,000 poster presentations, 200 exhibits, and more than 20 symposia. The largest meeting of its type in the world, the Biophysical Society Annual Meeting retains its small-meeting flavor through its subgroup meetings, platform sessions, social activities, and committee programs.

QUICK LINKS

Meeting Home Page: http://www.biophysics.org/2011meeting
General Meeting Information: http://www.biophysics.org/GeneralInfo/Overview/tabid/2062/Default.aspx
Search abstracts: http://www.abstractsonline.com/plan/start.aspx?mkey={FEA830A5-24AD-47F3-8E61-FCA29F5FEF34}

PRESS REGISTRATION

The Biophysical Society invites credentialed journalists, freelance reporters working on assignment, and public information officers to attend its Annual Meeting for free. For more information on registering as a member of the press, please contact Ellen Weiss at eweiss@biophysics.org or 240-290-5606. Also see: http://www.biophysics.org/Registration/Press/tabid/2148/Default.aspx

ABOUT THE BIOPHYSICAL SOCIETY

The Biophysical Society, founded in 1956, is a professional, scientific society established to encourage development and dissemination of knowledge in biophysics. The society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its over 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the society or the 2011 Annual Meeting, visit www.biophysics.org

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.