News Release

Icebergs in the Antarctic play important role in carbon cycle

After following the path of a drifting iceberg, research team’s discoveries could have implications for climate change studies

Peer-Reviewed Publication

University of California - San Diego

Moon and Iceberg

image: This is the C18a iceberg in the Weddell Sea with the moon in the background. view more 

Credit: Diane Chakos

Icebergs cool and dilute the ocean water they pass through and also affect the distribution carbon-dioxide-absorbing phytoplankton in the Southern Ocean, according to a team of researchers from UC San Diego and the University of San Diego.

The effects are likely to influence the growth of phytoplankton in the Atlantic sector of the Southern Ocean and especially in an area known as "Iceberg Alley" east of the Antarctic Peninsula.

Enhanced phytoplankton growth would increase the rate at which carbon dioxide is removed from the ocean, an important process in the carbon cycle, said the leaders of the National Science Foundation (NSF)-funded study.

The results appear in the journal Deep-Sea Research II in a paper titled "Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea." The main results from this paper were also highlighted in Nature Geoscience's March issue.

"Iceberg transport and melting have a prominent role in the distribution of phytoplankton in the Weddell Sea," said paper lead author John J. Helly, who holds joint appointments at the San Diego Supercomputer Center and Scripps Institution of Oceanography at UCSD. "These results demonstrate the importance of a multi-disciplinary scientific team in developing a meaningful picture of nature across multiple scales of measurement and the unique contributions of ship-based field research."

"The results demonstrate that icebergs influence oceanic surface waters and mixing to greater depths than previously realized," added paper co-author Ronald S. Kaufmann, Associate Professor of Marine Science and Environmental Studies at the University of San Diego.

The findings document a persistent change in physical and biological characteristics of surface waters after the transit of an iceberg. The change in surface water properties such as salinity lasted at least ten days, far longer than had been expected.

Sampling was conducted by a surface-mapping method used to survey the area around an iceberg more than 32 kilometers (20 miles) in length. The team surveyed the same area again ten days later, after the iceberg had drifted away. After ten days, the scientists observed increased concentrations of chlorophyll a and reduced concentrations of carbon dioxide compared to nearby areas without icebergs.

"We were quite surprised to find the persistence of the iceberg effects over many days," said Helly, director of the Laboratory for Environmental and Earth Sciences at SDSC.

The new results demonstrate that icebergs provide a connection between the geophysical and biological domains that directly affects the carbon cycle in the Southern Ocean. This research significantly extends previous research results conducted in the same environment and reveals the dynamic properties of icebergs and their effects on the ocean in unexpected ways.

"These findings confirm that icebergs are a dynamic and significant component of polar ecosystems," said Roberta L. Marinelli, director of the NSF's Antarctic Organisms and Ecosystems Program.

###

NSF manages the U.S. Antarctic Program, through which it coordinates all U.S. research on the southernmost continent and aboard ships in the Southern Ocean.

The research was conducted as part of a multi-disciplinary project involving scientists from the Monterey Bay Aquarium Research Institute, University of South Carolina, University of Nevada, Reno, University of South Carolina, Brigham Young University, and the Bigelow Laboratory for Ocean Sciences. Scripps Oceanography graduate student Gordon Stephenson and research biologist Maria Vernet are also co-authors of the paper.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

About Scripps Institution of Oceanography Scripps Institution of Oceanography at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,400, and annual expenditures of approximately $170 million from federal, state and private sources. Scripps operates robotic networks, and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 415,000 visitors each year. Learn more at scripps.ucsd.edu.

About UC San Diego

Fifty years ago, the founders of the University of California, San Diego, had one criterion for the campus: It must be distinctive. Since then, UC San Diego has achieved the extraordinary in education, research and innovation. Sixteen Nobel laureates have taught on campus; stellar faculty members have been awarded Fields Medals, Pulitzer Prizes, McArthur Fellowships and many other honors. UC San Diego—recognized as one of the top ten public universities by U.S. News & World Report and named by the Washington Monthly as number one in the nation in rankings measuring "what colleges are doing for the country"—is widely acknowledged for its local impact, national influence and global reach. UC San Diego is celebrating 50 years of visionaries, innovators and overachievers. www.50th.ucsd.edu


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.