News Release

Video captures cellular 'workhorses' in action

Peer-Reviewed Publication

Yale University

Breaking Up Is Hard to Do

video: Thread-like actin filaments, strong as commercial plastic, are the muscular workhorses of our cells -- pushing on membranes to move cells to the proper location within tissues and applying pressure within the interior to keep all working parts of the cell where they need to be. These filaments do their jobs through a mysterious process of continual splitting and reassembly. In the movie, filaments are caught in the act of disassembly. Filament ends are marked by red and green arrows and the severing events are indicated by pink arrows and yellow flashes. The images answer long-standing questions about just where these breaks occur. view more 

Credit: Cristian Suarez

Scientists at Yale University and in Grenoble France have succeeded in creating a movie showing the breakup of actin filaments, the thread-like structures inside cells that are crucial to their movement, maintenance and division.

Actin filaments are the muscular workhorses of our cells — pushing on membranes to move cells to the proper location within tissues and applying pressure within the interior to keep all working parts of the cell where they need to be. These filaments do their jobs through a mysterious process of continual splitting and reassembly.

Actin filaments are assembled and disassembled in a complex series of molecular events, known to be influenced by the protein cofilin. However, it was not known exactly where these breaks occur along the filaments, made up of actins monomer, which are as strong as commercial plastic.

Enrique De La Cruz, associate professor of molecular biophysics and biochemistry at Yale, and his French colleagues used fluorescent stains of cofilin which enabled them to create movies of this molecular disassembly. They used technology called total internal reflection fluorescence microscopy peer into the inner workings of the cell.

###

The work is published in the April 28 issue of Current Biology.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.