Public Release:  Gene therapy stimulates protein that blocks immune attack and prevents Type 1 diabetes in mice

Child & Family Research Institute

Increasing a specific protein in areas of the pancreas that produce insulin blocks the immune attack that causes type 1 diabetes, researchers reported in the August issue of the Journal of Clinical Investigation, published early online.

The discovery could lead to a drug that prevents the progression of type 1 diabetes in people newly diagnosed who are in the "honeymoon" phase of the disease, when the immune system has not yet destroyed all of the insulin-producing beta cells in the pancreas.

The finding could also lead to new drugs for overcoming organ rejection in transplant patients and for improving the survival of transplanted islets - the clusters of cells in the pancreas that contain beta cells.

Normally, as the immune system successfully defeats an infection, a special type of white blood cell called T-regulatory cells produce chemical signals that turn off the immune response.

The researchers took advantage of this phenomenon as they sought to protect the beta cells from immune attack.

They used a modified virus to insert the gene for a protein called CCL22 into the beta cells of a strain of mice known to develop diabetes. The gene caused the beta cells to produce the CCL22 protein. This attracted T-regulatory cells, which blocked the attacking immune cells and prevented most of the mice from developing type 1 diabetes.

CCL22 was discovered years ago by ovarian cancer researchers who noticed that tumours emit the protein to avoid being destroyed by the immune system.

"It's a novel way to turn down the immune system specifically in the region of the beta cells inside the pancreas, and that may be a big advantage over general immune suppression, which can have significant side effects," says Dr. Bruce Verchere, one of the study's principal investigators. He is head of the diabetes research program at the Child & Family Research Institute (CFRI) at BC Children's Hospital, Irving K Barber Chair in Diabetes Research, and professor, Department of Pathology & Laboratory Medicine and Department of Surgery at the University of British Columbia (UBC).

The study's co-lead author Dr. Joel Montane says more research is needed before the findings can be used clinically.

"Next, we need to better understand the mechanism," says Dr. Montane, a UBC post-doctoral fellow at CFRI. "We don't know exactly how CCL22 attracts T-regulatory cells to inhibit the immune response. Once we understand that, it may lead to a drug that can prevent or reverse diabetes."

"The research points to CCL22, or a modified form of it, as a potential drug to control the immune response," says Dr. Loraine Bischoff, the co-lead author. "Our strategy might also be used in other autoimmune disorders and in transplantation. The issue is how to administer it to humans. It's exciting because there are presently clinical trials using T-regulatory cells to prevent autoimmune disease."

A team of CFRI-UBC scientists, including co-principal investigator Dr. Rusung Tan, worked on this discovery.

###

This research was funded by the Canadian Institutes of Health Research, the Juvenile Diabetes Research Foundation, and the Michael Smith Foundation for Health Research.

The Diabetes Research Program at CFRI is supported by BC Children's Hospital Foundation and the Canucks for Kids Fund.

CFRI conducts discovery, clinical and applied research to benefit the health of children and families. It is the largest institute of its kind in Western Canada. CFRI works in close partnership with UBC; BC Children's Hospital and Sunny Hill Health Centre for Children, BC Women's Hospital & Health Centre, agencies of PHSA; and BC Children's Hospital Foundation. CFRI has additional important relationships with British Columbia's (B.C.'s) five regional health authorities and with B.C. academic institutions Simon Fraser University, the University of Victoria, the University of Northern British Columbia, and the British Columbia Institute of Technology. For more information, visit www.cfri.ca.

UBC is one of Canada's largest and most prestigious public research and teaching institutions, and one of only two Canadian institutions to be consistently ranked among the world's 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants. For more information, visit www.ubc.ca.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.