[ Back to EurekAlert! ] Public release date: 21-Jul-2011
[ | E-mail Share Share ]

Contact: Julia Romanowska
jrom@icm.edu.pl
Public Library of Science

Computer simulations aid understanding of bacterial resistance against commonly used antibiotics

A recent study into the interactions between aminoglycoside antibiotics and their target site in bacteria used computer simulations to elucidate this mechanism and thereby suggest drug modifications.

In the article, which will be published on July 21st in the open-access journal PLoS Computational Biology, researchers from University of Warsaw, Poland, and University of California San Diego, USA, describe their study of the physical basis of one bacterial resistance mechanism - mutations of the antibiotic target site, namely RNA of the bacterial ribosome. They performed simulations and observed changes in the interaction between the antibiotic and the target site when different mutations were introduced.

In hospitals throughout the world, aminoglycosidic antibiotics are used to combat even the most severe bacterial infections, being very successful especially against tuberculosis and plague. However, the continuous emergence of resistant bacteria has created an urgent need to improve these antibiotics. Previous experiments on bacteria have shown that specific point mutations in the bacterial ribosomal RNA confer high resistance against aminoglycosides. However, the physico-chemical mechanism underlying this effect has not been known. Using computer simulations the researchers explained how various mutations in this specific RNA fragment influence its dynamics and lead to resistance.

Bacteria have developed other ways of gaining resistance, not just through mutations, and further studies are underway. The authors are now investigating the resistance mechanism by which bacterial enzymes actively modify and neutralize aminoglycosidic antibiotics. These molecular modeling studies together with experiments could help to design even better aminoglycoside derivatives in the future.

###

Funding: The work is supported by the University of Warsaw (BST1450/2009 1550/2010 and G31-4), Polish Ministry of Science and Higher Education (N N301 245236 and N N301 033339) and Foundation for Polish Science (Focus program and Team project (TEAM/2009-3/8) co-financed by European Regional Development Fund operated within Innovative Economy Operational Programme). Work at UCSD is supported in part by National Science Foundation (NSF), National Institutes of Health, Howard Hughes Medical Institute, Center for Theoretical Biological Physics, National Biomedical Computation Resource, and the NSF Supercomputer Centers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Romanowska J, McCammon JA, Trylska J (2011) Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site. PLoS Comput Biol 7(7): e1002099. doi:10.1371/journal.pcbi.1002099

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.ploscompbiol.org/doi/pcbi.1002099 (link will go live on Thursday)

CONTACT:

Julia Romanowska
University of Warsaw
Telephone: +48 22 5540832
Email: jrom@icm.edu.pl

Disclaimer

This press release refers to an upcoming article in PLoS Computational Biology. The release is provided by journal staff, or by the article authors and/or their institutions. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

Media Permissions

PLoS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited (e.g., Kaltenbach LS et al. (2007) Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. PLoS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082). No prior permission is required from the authors or publisher. For queries about the license, please contact the relative journal contact indicated here: http://www.plos.org/journals/embargopolicy.php

About PLoS Computational Biology

PLoS Computational Biology (www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLoS Computational Biology are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.