News Release

Nanotubes key to microscopic mechanics

New nanocomposite materials to be used in microturbines, microreactors, and bioimplants

Peer-Reviewed Publication

Elsevier

Oxford -- In the latest issue of Elsevier's Materials Today, researchers from Spain and Belgium reported on the innovative use of carbon nanotubes to create mechanical components for use in a new generation of micro-machines. While the electronics industry has excelled in miniaturizing components, with individual elements approaching the nanoscale (or a billionth of a meter), reducing the size of mechanical systems has proved much more challenging.

One of the difficulties of shrinking mechanical devices is that the conventional techniques used to produce individual components are not useful when it comes to creating intricate shapes on the microscale. One promising technique is electrical discharge machining (EDM), which uses a spark of electricity to blast away the unwanted material to create complex shapes. However, this method requires that the target material is electrically conductive, limiting the use of EDM on hard, ceramic materials.

But now, by implanting carbon nanotubes in silicon nitride, the ceramic of choice, Manuel Belmonte and colleagues have been able to increase the electrical conductivity of the material by 13 orders of magnitude and have used EDM to produce a microgear without compromising the production time or integrity of the apparatus.

Carbon nanotubes rose to prominence in the early 1990s when their range of remarkable properties became apparent. These include phenomenal strength and electrical properties that can be tailored to suit. Each tube is made from a rolled up sheet of carbon atoms in a honeycomb-like structure. Unrolled, this sheet is also known as graphene, the innovative material which was the subject of the 2010 Nobel Prize in Physics. Implanted inside a ceramic, these nanotubes form a conductive network that greatly reduces electrical resistance.

The electrical conductivity of the composite material is much higher, while the mechanical properties of the ceramic are preserved and wear resistance is significantly improved. As the corresponding author, Dr Manuel Belmonte, clarifies; this breakthrough will "allow the manufacture of intricate 3D components, widening the potential use of advanced ceramics and other insulating materials". The team hopes that such nanocomposite materials will find use in emerging applications, such as, microturbines, microreactors, and bioimplants.

###

Notes to editors This article is "Carbon nanofillers for machining insulating ceramics" (doi: 10.1016/S1369-7021(11)70214-0) by Olivier Malek, Jesús González-Julián, Jef Vleugels, Wouter Vanderauwera, Bert Lauwers, Manuel Belmonte. It appears in Materials Today, Volume 14, Issue 10, Page 496 (2011) published by Elsevier.

Full text of the article is freely available; contact Jonathan Agbenyega at 44-1865-84-3987 or j.agbenye@elsevier.com. Manuel Belmonte (mbelmonte@icv.csic.es) from the Institute of Ceramics and Glass (ICV-CSIC) is the corresponding author of the study. Journalists requesting an interview may contact him.

About Materials Today

Materials Today is the open access journal published by Elsevier for researchers with an interest in materials science and technology. To register for a free subscription visit: http://www.materialstoday.com/magazine-subscription. For more information on the journal, including the editorial calendar and advertising options, contact the editor, Dr Jonathan Agbenyega at j.agbenye@elsevier.com. Follow @MaterialsToday on Twitter; and on Facebook: http://www.facebook.com/elsevier.materials.

About Elsevier

Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contact
Jonathan Agbenyega
Elsevier
44-1865-84-3987
j.agbenye@elsevier.com


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.