Public Release:  'Mirage-effect' helps researchers hide objects

Institute of Physics

Scientists have created a working cloaking device that not only takes advantage of one of nature's most bizarre phenomenon, but also boasts unique features; it has an 'on and off' switch and is best used underwater.

The researchers, from the University of Texas at Dallas have demonstrated the device's ability to make objects disappear in a fascinating video shown here http://www.youtube.com/watch?v=3YO4TTpYg7g

This novel design, presented today, Tuesday 4 September, in IOP Publishing's journal Nanotechnology, makes use of sheets of carbon nanotubes (CNT) - one-molecule-thick sheets of carbon wrapped up into cylindrical tubes.

CNTs have such unique properties, such as having the density of air but the strength of steel, that they have been extensively studied and put forward for numerous applications; however it is their exceptional ability to conduct heat and transfer it to surrounding areas that makes them an ideal material to exploit the so-called "mirage effect".

The mirage effect, frequently observed in deserts or on long roads in the summer, is an optical phenomenon in which light rays are bent to produce a displaced image of distant objects or the sky.

The most common example of a mirage is when an observer appears to see pools of water on the ground. This occurs because the air near the ground is a lot warmer than the air higher up, causing lights rays to bend upward towards the viewer's eye rather than bounce off the surface.

This results in an image of the sky appearing on the ground which the viewer perceives as water actually reflecting the sky; the brain sees this as a more likely occurrence.

Through electrical stimulation, the transparent sheet of highly aligned CNTs can be easily heated to high temperatures. They then have the ability to transfer that heat to its surrounding areas, causing a steep temperature gradient. Just like a mirage, this steep temperature gradient causes the light rays to bend away from the object concealed behind the device, making it appear invisible.

With this method, it is more practical to demonstrate cloaking underwater as all of the apparatus can be contained in a petri dish. It is the ease with which the CNTs can be heated that gives the device its unique 'on and off' feature.

Lead-author, Dr Ali Aliev, said, "Using these nanotube sheets, concealment can be realized over the entire optical range and rapidly turned on-and-off at will, using either electrical heating or a pulse of electromagnetic radiation.

"The research results also provide useful insights into the optimization of nanotube sheets as thermoacoustic projectors for loud speaker and sonar applications, where sound is produced by heating using an alternating electrical current."

An Institute of Physics spokesperson said, "It is remarkable to see this cloaking device demonstrated in real life and on a workable scale. The array of applications that could arise from this device, besides cloaking, is a testament to the excellent work of the authors."

###

From Tuesday 4 September, this paper can be downloaded from http://iopscience.iop.org/0957-4484/22/43/435704

Notes to Editors

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Publishing Press Assistant, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.Bishop@iop.org

Mirage effect from thermally modulated transparent carbon nanotube sheet

2. The published version of the paper "Mirage effect from thermally modulated transparent carbon nanotube sheet" Aliev A et al 2011 22 435704 will be freely available online from Tuesday 4 September. It will be available at http://iopscience.iop.org/0957-4484/22/43/435704

Nanotechnology

3. Nanotechnology encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/

The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.