Public Release:  Dantrolene protects neurons from Huntington's disease

BioMed Central

Huntington's disease (HD) is characterized by ongoing destruction of specific neurons within the brain. It affects a person's ability to walk, talk, and think - leading to involuntary movement and loss of muscle co-ordination. New research published in BioMed Central's open access journal Molecular Neurodegeneration shows that the RyanR inhibitor Dantrolene is able to reduce the severity of walking and balance problems in a mouse model of HD.

Progressive damage to medium spiny neurons (MSN) in the brain of a person with HD is responsible for many of the symptoms and is caused by an inherited recessive mutation in the gene 'Huntingtin'. The mutated version of this protein leads to abnormal release of calcium from stores within the neurons which in turn disrupts the connections between neurons firing and muscle contractions, and eventually kills the neurons.

Researchers from the University of Texas Southwestern Medical Center tested Dantrolene, a muscle relaxant which works by stabilizing calcium signaling, and showed that this drug could prevent calcium-dependent toxicity in laboratory grown neurons. The team led by Dr Ilya Bezprozvanny also found that Dantrolene could prevent destruction of co-ordination, measured by beam walking and footprint patterns, in mice with Huntington's-like disease.

Dr Bezprozvanny explained, "One of the features of HD mice is the progressive loss of their NeuN-positive neurons. Dantrolene was not only able to protect muscle co-ordination in mice with HD but also prevented destruction of NeuN positive neurons. Our results suggest that RyanR inhibitors, such as Dantrolene, should be considered as future treatments to slow down the effects of diseases like Huntington's."

###

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: 44-20-3192-2370
Email: hilary.glover@biomedcentral.com

Notes to Editors

1. Dantrolene is neuroprotective in Huntingtons disease transgenic mouse model Xi Chen, Jun Wu, Svetlana Lvovskaya, Emily Herndon, Charlene Supnet and Ilya Bezprozvanny. Molecular Neurodegeneration (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Molecular Neurodegeneration is an open access, peer-reviewed online journal that encompasses all aspects of neurodegeneration research at the molecular and cellular levels.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.