Public Release:  New communication code discovered in disease-causing bacteria

PLOS

Single-celled bacteria communicate with each other using coded messages to coordinate attacks on their targets. Until now, the diversity of codes employed by these invading bacteria was thought to be extremely limited. However, a new report published Dec. 12 in PLoS ONE reveals bacterial communication by a novel, previously undescribed signal type - and, as is often the case in evolutionary stories, some plants have evolved a complementary cypher-breaking detection system that intercepts this bacterial code and uses the information to trigger a robust immune response, preventing disease.

Over the last 20 years, researchers have shown that bacteria employ specific signals to communicate. These signaling molecules, called "bacterial Esperanto" by Professor Bonnie Bassler, an early pioneer in studies of bacterial communication, accumulate in the external environment as the cells grow, and when the concentration reaches a certain threshold level, the bacteria mobilize concerted, group actions.

Until now, it was thought that the two major groups of bacteria (Gram-positive and Gram-negative) use distinctly different types of communication codes. However, the newly discovered signal, called Ax21 and found in a rice-infecting bacteria, doesn't fall into either class. While the previously characterized signals in the bacterial coding repertoire were all relatively small molecules, Ax21 is a small protein, which makes it much larger.

Perception of Ax21 by other bacteria triggers a massive change in their genetic program, altering the expression of nearly 500 genes, or approximately 10% of the bacteria's genome. These changes allow the bacteria to assemble into elaborate protective bunkers, called biofilms, which render the bacteria resistant to dessication and antibiotic treatment. Thus, by virtue of communication and communal living, bacteria increase their chances of survival and proliferation. Ax21 perception also regulates the production of a virulent arsenal, including "effectors" that are shot directly into the host to disrupt its defenses and that initiate motility, allowing the bacteria to colonize new sites for infection.

Most rice plants are virtually defenseless against this Ax21-mediated bacterial attack - except for those plants that carry a particular immune receptor, called XA21, which detects Ax21. This early detection gives the plant time to mobilize its defenses and mount an early and potent defense response. The discovery of a signaling protein from a Gram-negative bacterium with a dual role in bacterial communication and in triggering the host innate immune response has not previously been demonstrated.

The XA21 receptor belongs to a large and important class of immune receptors; the discovery of this class in flies and mice earned Professors Bruce Beutler and Jules Hoffman the 2011 Nobel Prize in Physiology and Medicine. Today's report is the first to show that these receptors can recognize bacterial signaling molecules.

The authors, led by Professor Pamela Ronald at University of California, Davis, have also shown that Ax21 is present not only in important plant pathogens, but also in a human pathogen that infects some hospital patients. This conservation in both plant and animal pathogens suggests that Ax21 also serves as a signal in these related microbes. Furthermore, exploration of bacterial genomes predicts the presence of an abundance of small secreted proteins similar to Ax21 in many other bacterial species, suggesting the intriguing possibility that other species of bacteria also use small proteins to communicate and coordinate infection.

Control of Gram-negative bacterial infections in plants and animals remains a major challenge for the medical profession and for farmers, because conventional approaches are often not sufficient to eradicate these infections.

One major reason for persistence seems to be the capability of most bacteria to grow within biofilms that protect them from adverse environmental factors and antibiotics. The knowledge that bacteria use Ax21 to communicate is expected to lead to new methods for controlling bacterial diseases.

###

Citation: Han S-W, Sriariyanun M, Lee S-W, Sharma M, Bahar O, et al. (2011) Small Protein-Mediated Quorum Sensing in a Gram-Negative Bacterium. PLoS ONE 6(12): e29192. doi:10.1371/journal.pone.0029192

Financial Disclosure: This work was supported by NIH grant GM55962 to PCR. S-WL's work, in part, was supported by the Next-Generation BioGreen 21 Program (PJ0080982011) and the Mid-Career Researcher Program (2010-0026679). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interest Statement: The authors have declared that no competing interests exist.

Disclaimer: This press release refers to upcoming articles in PLoS ONE. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

About PLoS ONE

PLoS ONE is the first journal of primary research from all areas of science to employ a combination of peer review and post-publication rating and commenting, to maximize the impact of every report it publishes. PLoS ONE is published by the Public Library of Science (PLoS), the open-access publisher whose goal is to make the world's scientific and medical literature a public resource.

All works published in PLoS ONE are Open Access. Everything is immediately available--to read, download, redistribute, include in databases and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authors and source are properly attributed. For more information about PLoS ONE relevant to journalists, bloggers and press officers, including details of our press release process and our embargo policy, see the everyONE blog at http://everyone.plos.org/media.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.