[ Back to EurekAlert! ] Public release date: 10-Jan-2012
[ | E-mail Share Share ]

Contact: Leslie Shepherd
shepherdl@smh.ca
416-864-6094
St. Michael's Hospital

New findings by St. Michael's researchers about the way cells work

Could lead to a test and therapy for kidney failure caused by E. coli

New findings by St. Michael's researchers about the way cells work could lead to a test and therapy for kidney failure caused by E. coli

TORONTO, Ont., Jan. 10, 2012—Ever since the water supply in Walkerton, Ont., was contaminated by E. coli in 2000, Dr. Philip Marsden has been trying to figure out just how a toxin released by that particular strain of the bacteria causes kidney damage in children.

Now Dr. Marsden and his team based at St. Michael's Hospital and the University of Toronto, led by graduate student Tania Petruzziello-Pellegrini, together with an international team of collaborators, have made new discoveries about the basic workings of endothelial cells that could lead to a diagnostic test for the serious kidney disease known as hemolytic uremic syndrome (HUS) and a possible treatment.

Endothelial cells line the inside of blood vessels and are the cells most severely affected in HUS, one of the most common causes of sudden onset kidney failure in children.

His work took a sudden twist in May 2011, when an E. coli outbreak swept northern Germany and researchers discovered that a different strain of the bacteria was producing the identical toxin. This time the HUS mainly affected adults, especially women, and was associated with severe kidney failure and strokes.

Dr. Marsden's team extracted endothelial cells from healthy people and exposed them to the toxin in a culture dish. They discovered a biological pathway never before known to have played a role in the development of HUS.

Specifically, they found that the toxin can increase the level of a chemokine, namely SDF-1, and its receptor, CXCR4. Chemokines are small secreted proteins that stimulate cells to move or migrate. CXCR4 was already known to stimulate the release and migration of the precursors of white blood cells from bone marrow, to change how blood vessels grow and to help the AIDS virus enter cells.

Dr. Marsden has found that too much communication between SDF-1 and CXCR4 molecules can also impact the development of HUS in animals and humans. His team made two important discoveries, published in The Journal of Clinical Investigation:

Dr. Marsden, who is a nephrologist, said a safe water supply and clean food supply chain is the most important step in preventing HUS caused by E. coli.

"If we can measure SDF-1 levels in real time during an E. coli outbreak and confirm these findings, then we have a strong case for a trial of plerixafor/AMD3100 in patients with toxin-producing E. coli to see if it prevents or improves cases of HUS," he said.

###

About St. Michael's Hospital

St. Michael's Hospital provides compassionate care to all who enter its doors. The hospital also provides outstanding medical education to future health care professionals in more than 23 academic disciplines. Critical care and trauma, heart disease, neurosurgery, diabetes, cancer care, and care of the homeless are among the Hospital's recognized areas of expertise. Through the Keenan Research Centre and the Li Ka Shing International Healthcare Education Center, which make up the Li Ka Shing Knowledge Institute, research and education at St. Michael's Hospital are recognized and make an impact around the world. Founded in 1892, the hospital is fully affiliated with the University of Toronto.

For more information, or to interview Dr. Marsden, please contact:
Leslie Shepherd
Manager, Media Strategy
Phone: 416-864-6094
shepherdl@smh.ca
St. Michael's Hospital
Inspired Care. Inspiring Science.
www.stmichaelshospital.com
Follow us on Twitter: http://www.twitter.com/stmikeshospital



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.