[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
16-Feb-2012

[ | E-mail ] Share Share

Contact: Phyllis Edelman
pedelman@genetics-gsa.org
301-634-7302
Genetics Society of America
@GeneticsGSA

New mouse collaborative cross resource promises new cures and treatments for diseases

Articles published in the Genetics Society of America journals, GENETICS and G3: Genes/Genomes/Genetics present findings on this resource

A new genetic resource from an international research consortium is expected to accelerate the development of new cures and treatments for a wide range of human diseases. This project, called the mouse "Collaborative Cross" (CC) resource, will increase the likelihood that experiments conducted in mice will advance our understanding of human biology. The mice in the CC have 90 percent of the genetic diversity present in laboratory mice, which mirrors the genetic diversity in humans. This will enable researchers to study traits and human diseases of complex origins in an appropriate model system.

Key findings arising from the CC will be published in February 2012 as a series of articles across both scientific journals published by the Genetics Society of America (GSA): GENETICS and G3: Genes|Genomes|Genetics. The 15 articles highlight the contributions of the CC--and a companion mouse resource called the "Diversity Outbred" (DO) resource--to a number of important areas of human health. The MCC and DO are already shedding light on the genes influencing HDL cholesterol levels, systolic blood pressure, triglyceride levels, glucose, and variation in hematological traits like red and white blood cell counts, reactions to the influenza A virus, and mouse brain reaction to clozapine, a drug used for schizophrenia.

According to Dr. Fernando Pardo-Manuel de Villena (University of North Carolina at Chapel Hill Department of Genetics and Lineberger Comprehensive Cancer Center), one of the primary leaders of the CC, "A common complaint about using animal models has been the fact that some research doesn't carry over when applied to humans. The Collaborative Cross resource hopes to answer this complaint."

"Genetic causes may underlie many idiosyncratic adverse drug reactions," explained Dr. Gary Churchill (The Jackson Laboratory), another leader of the CC project. "Initial screening with this genetically diverse and heterogeneous model may allow for more realistic assessments of the risk of adverse effects and may be a reliable route for applying findings from mouse to human populations."

Dr. David Threadgill (North Carolina State University and UNC Lineberger), who originally proposed the idea for this resource and is also a leader of the project, added, "Research on mouse models may lead to increased safety in human drug trials and consequently has the potential of reducing the costs of drug development."

"Publishing these papers in GSA's sister journals enables those interested in this research to access a large body of information quickly and easily," said Dr. Lauren McIntyre, senior editor of the journal GENETICS and professor in the Department of Molecular Genetics and Microbiology at the University of Florida. "The journals have made all the data associated with the papers openly available, and are committed to the widest possible distribution. This group of research articles should help accelerate the development of new treatments and drugs."

The international consortium developing these mouse populations includes the University of North Carolina (UNC), North Carolina State University (NCSU), The Jackson Laboratory, Tel Aviv University, Oxford University and Geniad/Australia. The mice are housed and 'curated' at UNC-Chapel Hill. The CC and DO populations are available for researchers worldwide who need a common genetic reference population for the integrative analysis of complex systems.

###

ABOUT GENETICS: Since 1916, GENETICS (http://www.genetics.org/) has published high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, a peer-reviewed, peer-edited journal of the Genetics Society of America, is one of the world's most cited journals in genetics and heredity.

ABOUT G3: Genes|Genomes|Genetics: The Genetics Society of America established G3: Genes|Genomes|Genetics (http://www.g3journal.org) in 2011 to meet the need for rapid review and publication of high-quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, sequence of novel species, genome-wide association and QTL studies, as well as mutant screens and advances in methods and technology. The journal is peer-reviewed, peer-edited, and fully open-access.

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. The GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes GENETICS, a leading journal in the field and a new online, open-access publication, G3: Genes|Genomes|Genetics. For more information about GSA, please visit http://www.genetics-gsa.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.