News Release

Introducing birth control in mosquitoes

Grant to UC Riverside's Alexander Raikhel can greatly help control population of disease-spreading mosquitoes

Grant and Award Announcement

University of California - Riverside

Alexander Raikhel, 	University of California - Riverside

image: Entomologist Alexander Raikhel at the University of California - Riverside will lead a research team to study how birth control can be introduced in mosquitoes. view more 

Credit: L. Duka.

RIVERSIDE, Calif. — Female mosquitoes require energy for their egg development, which they acquire from vertebrate blood. But by sucking on blood, they become vectors of numerous disease pathogens of human and domestic animals. If the mechanisms that govern their egg production are better understood, novel approaches to controlling the reproduction and population of mosquitoes can be devised.

Now a research team led by Alexander Raikhel, a distinguished professor of entomology at the University of California, Riverside, has received a five-year $2.8 million grant from the National Institutes of Health to study the molecular basis of hormonal regulation of mosquito reproduction.

The researchers will focus on deciphering the genes involved in mediating the action of hormones involved during egg production in mosquitoes — specifically, Aedes aegypti, the mosquito that spreads dengue and yellow fever.

"What we are setting out to do is introduce birth control, based on hormones, in mosquitoes," said Raikhel, an expert in the molecular biology of mosquitoes and a member of the National Academy of Sciences. "Our task is to find a way to interrupt the host-seeking behavior of mosquitoes by manipulating their hormones and thus interrupting their egg development. With egg development halted, the population of mosquitoes would eventually collapse."

Nearly 2.5 billion people are at risk for contracting dengue fever. Each year, there are 100 million cases of dengue in the world. Yellow fever results in 30,000 deaths per year; about 200,000 cases are reported each year.

Raikhel explained that a hormone unique to insects, called the "juvenile hormone," plays a key role in transforming a young female adult to a mature one that is capable of blood feeding, egg development, and thus spreading pathogens. The absence of this hormone in the body of the female mosquito impedes the growth of the mosquito to the adult stage. For the mosquito to reach the adult stage, levels of this hormone must first rise and then drop.

"This hormone is crucial for egg development," Raikhel said. "If we can figure out how its levels can be manipulated so that egg development is prevented, we can reduce the number of mosquitoes."

Each mosquito cell has a receptor for the juvenile hormone. The exact nature of this receptor, however, has eluded researchers for many years.

"In this project, we plan also to understand the structure and function of this receptor," Raikhel said. "One reason this receptor has been very difficult to study is that, unlike other receptors like it, it does not lie on the surface of the cell. Instead it lies inside the cell."

Raikhel's lab will attempt to block the action of the juvenile hormone's receptors.

"Several levels of interception can be designed in the lab so that no egg development in mosquitoes results," he said.

While his lab will focus in this project on only Aedes aegypti, the methods developed can be applied also to other disease-spreading mosquitoes.

###

Raikhel is recognized internationally for his significant contributions to insect science and vector biology. A leader in insect and mosquito reproduction and immunity, he is the author or coauthor of more than 160 research papers in international peer-reviewed scientific journals and books.

His research team includes the following researchers at UC Riverside: Tusar Saha, Zhen Zou, and Sang Woon Shin, all of whom work in Raikhel's lab; and Thomas Girke, an associate professor of bioinformatics.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.