Public Release:  A nanoclutch for nanobots

American Institute of Physics

This release is also available in Chinese on EurekAlert! Chinese.

Chinese researchers have designed and tested simulations of a "nanoclutch," a speed regulation tool for nanomotors. The nanoclutch consists of two carbon nanotubes (CNTs), one inside the other, separated by a film of water. Electrowetting forces control the friction between the water and the inner and outer walls of the CNTs. When the two tubes are electrically charged, the water confined between them can transmit the torque from the inner tube to the outer tube, and the device is said to be in the engaged state. When the CNTs are uncharged, the device is in the disengaged state. In a paper accepted to the American Institute of Physics' Journal of Applied Physics, the authors write that their proposed device can perform stepless speed regulation by changing the magnitude of the charge assigned to the CNT atoms. Though further work is needed, they say the model may be helpful in designing and manufacturing nanorobots.

###

Title: Carbon Nanotube-Based Charge-Controlled Speed-Regulating Nanoclutch
Journal: Journal of Applied Physics
Authors: Zhong-Qiang Zhang (1), Hong-Fei Ye (2), Zhen Liu (3), Jian-Ning Ding (1), Guang-Gui Cheng (1), Zhi-Yong Ling (1), Yong-Gang Zheng (2), Lei Wang (4), and Jin-Bao Wang (5)

(1) Micro/Nano Science and Technology Center, Jiangsu University, China
(2) State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, China
(3) School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, China
(4) Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University, China
(5) School of Naval Architecture & Civil Engineering, Zhejiang Ocean University, China

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.