[ Back to EurekAlert! ] Public release date: 22-Jun-2012
[ | E-mail Share Share ]

Contact: Catherine Meyers
cmeyers@aip.org
301-209-3088
American Institute of Physics

Researchers test carbon nanotube-based ultra-low voltage integrated circuits

A team of researchers from Peking University in Beijing, China, and Duke University in Durham, North Carolina, has demonstrated that carbon nanotube-based integrated circuits can work under a supply voltage much lower than that used in conventional silicon integrated circuits. Low supply voltage circuits produce less heat, which is a key limiting factor for increased circuit density. Carbon-based electronics have attracted attention mostly because of their speed. The new research shows that carbon nanotube integrated circuits could also offer the promise of extending Moore's Law by allowing even more transistors to fit onto a single chip without overheating. The results are reported in a paper accepted for publication in the American Institute of Physics' journal Applied Physics Letters.

###

Title: "Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V"

Journal: Applied Physics Letters

Authors: Li Ding (1), Shibo Liang (1), Tian Pei (1), Zhiyong Zhang (1), Sheng Wang (1), Weiwei Zhou (2), Jie Liu (2), and Lian-Mao Peng (1)

(1) Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, China

(2) Department of Chemistry, Duke University, North Carolina



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.