News Release

Scientists decode TREX which could see new treatments for cancer realized

Peer-Reviewed Publication

University of Sheffield

Decoded process could hold the key to future treatments for a wide range of chronic health problems including Motor Neuron Disease, myotonic dystrophy and a wide range of cancers, University of Sheffield scientists have revealed.

Experts from the University's Department of Molecular Biology and Biotechnology, collaborating with scientists from Harvard Medical School in the USA, have revealed how a complicated set of proteins called TREX act as a passport for the transfer of cell blueprints which create proteins that are essential for life.

The researchers believe their better understanding will mean they can ultimately fix problems in the process which cause fatal health conditions like Motor Neuron Disease, myotonic dystrophy and a wide range of cancers.

Professor Stuart Wilson, who led the groundbreaking project, said: "Protein production is an essential part of life for all organisms. This process involves reading the code in genes and converting this to a message which is ultimately decoded to make a protein.

"The message is made of a special molecule called mRNA. In all organisms from yeast through to man the mRNA is made in a compartment in the cell called the nucleus, but then has to be transported to a separate compartment, called the cytoplasm, where it is decoded to make a protein. This process of mRNA transport is essential for life and when it malfunctions in humans it can lead to diseases such as Motor Neuron Disease or cancer."

Researchers have shown how proteins called TREX provide a mark on the mRNA which acts as the passport which unlocks a transporter protein called Nxf1, allowing it to land on the mRNA and transport it to the cytoplasm to create proteins.

Professor Wilson added: "When a car is built in a factory, it goes through various stages of production with parts being added and, hopefully, quality control checks before it is driven out of the factory and into the salesroom.

"Similarly mRNA goes through various modifications in the nucleus, with bits added on and other sections removed. Only when the mRNA reaches the end of the production line in the nucleus and passes all the quality control checks is it given the passport which allows it to be transported to the cytoplasm and then used to make proteins.

"Until now, it has not been clear how the cell knows when the mRNA has reached the end of the production line in the nucleus and thus when it should be given a passport allowing passage to the cytoplasm. Now we have identified how the passport is issued, allowing the mRNA transport and the production of proteins in the cell which is essential for life."

###

Notes to editors:

The University of Sheffield

With nearly 25,000 students from 125 countries, the University of Sheffield is one of the UK's leading and largest universities. A member of the Russell Group, it has a reputation for world-class teaching and research excellence across a wide range of disciplines. The University of Sheffield has been named University of the Year in the Times Higher Education Awards for its exceptional performance in research, teaching, access and business performance. In addition, the University has won four Queen's Anniversary Prizes (1998, 2000, 2002, and 2007).

These prestigious awards recognise outstanding contributions by universities and colleges to the United Kingdom's intellectual, economic, cultural and social life. Sheffield also boasts five Nobel Prize winners among former staff and students and many of its alumni have gone on to hold positions of great responsibility and influence around the world. The University's research partners and clients include Boeing, Rolls Royce, Unilever, Boots, AstraZeneca, GSK, ICI, Slazenger, and many more household names, as well as UK and overseas government agencies and charitable foundations.

The University has well-established partnerships with a number of universities and major corporations, both in the UK and abroad. Its partnership with Leeds and York Universities in the White Rose Consortium has a combined research power greater than that of either Oxford or Cambridge.

For further information please contact: Paul Mannion, Media Relations Officer, on 0114 2229851 or email P.F.Mannion@sheffield.ac.uk

To read other news releases about the University of Sheffield, visit: http://www.shef.ac.uk/news

NR4049/ends


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.