[ Back to EurekAlert! ] Public release date: 15-Nov-2012
[ | E-mail Share Share ]

Contact: Michael Bishop
michael.bishop@iop.org
01-179-301-032
Institute of Physics

Optical microscopes lend a hand to graphene research

The remarkable properties and subsequent applications of graphene have been well-documented since it was first isolated in 2004; however, researchers are still trying to find a quick, cheap and efficient way of measuring its thickness.

A group of researchers from China appear to have solved this problem by devising a universal method using just a standard optical microscope.

In a study published today, 16th November 2012, in IOP Publishing's journal Nanotechnology, they have shown that the thickness of graphene, along with a host of other two-dimensional materials, can be obtained by measuring the red, green and blue components of light as they are reflected from the material's surface.

The study shows that the contrast of red, green and blue values between the substrate on which the sample is placed and the sample itself increases with the thickness of the sample.

The method is fast, easily operated and requires no expensive equipment.

The researchers, from the Harbin Institute of Technology at Weihai and Southeast University, believe this is a significant contribution to the fundamental research and potential applications of materials, such as graphene, as many of their remarkable properties are reliant on the thickness of the material itself.

"In the past, methods for identifying the thickness of two-dimensional materials have been very expensive and have had a slow throughput. Our technique combines a common microscope with a simple bit of software, making it a very fast, cheap and efficient way of measuring thickness," said co-author of the study Professor Zhenhua Ni.

The researchers tested their method by examining mechanically exfoliated graphene, graphene oxide, nitrogen-doped graphene and molybdenuym disulphide, all of which have attracted great interest due to their intriguing electrical, mechanical, thermal and optical properties.

A standard optical microscope was used to obtain optical images of the samples and a piece of software called Matlab was used to read the red, green and blue values at each pixel of the optical image.

Raman spectroscopy and atomic force microscopy were used to confirm the researchers' thickness measurements.

###

From Friday 16 November, this paper can be downloaded from http://iopscience.iop.org/0957-4484/23/49/495713

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or to contact one of the researchers, contact IOP Press Officer, Michael Bishop:

Tel: 0117 930 1032
E-mail: Michael.Bishop@iop.org

Thickness identification of two-dimensional materials by optical image

2. The published version of the paper "Thickness identification of two-dimensional materials by optical image" Ying Ying Wang et al 2012 Nanotechnology 23 495713 doi:10.1088/0957-4484/23/49/495713 will be freely available online from Friday 16 November.

Nanotechnology

3. Nanotechnology encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/

The Institute of Physics

5. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 45,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.