News Release

Ben-Gurion U and Cincinnati Children's Hospital to develop new pediatric medical devices

Business Announcement

American Associates, Ben-Gurion University of the Negev

CINCINNATI, Ohio and BEER-SHEVA, Israel, December 27, 2012 — Ben-Gurion University of the Negev (BGU) and Cincinnati Children's Hospital Medical Center (CCHMC) have received early stage funding to develop three new devices that have applications for pediatric medical markets, as part of a collaboration announced this past spring.

The collaboration pairs BGU's technical and engineering capabilities with the medical expertise of CCHMC physicians. Each project will receive up to $100,000 in the first round, with all funding contingent upon achieving project-specific developmental milestones.

"The collaboration between clinicians and engineers is one of the necessities for success in the development of medical devices, addressing the very specific unmet medical needs of pediatric patients," explains Prof. Joseph Kost, dean of BGU's Faculty of Engineering Sciences.

"After vetting nearly 80 unmet clinical needs, the BGU-CCHMC team identified three significant innovations after thorough market analyses and review by both internal and external stakeholders," says Doron Krakow, executive vice president, American Associates, Ben-Gurion University of the Negev. "This collaboration will yield technology that could improve the medical care of children and potentially reduce healthcare system costs." The projects are being developed and led by a BGU engineer and a CCHMC clinician or surgeon. The initial three projects are:

Smart Sensing Catheter -- The smart sensing catheter will provide immediate and continuous assessment of the metabolic and physiological profile of critically ill infants and small children. The smart, micro-optic sensor combines nano-plasmonics with fiber optics that fit in a 1 x 1 mm area and can monitor and analyze at least 20 substances simultaneously.

"Once developed to the product level, the sensor can be used in other applications for water quality and environment pollutants monitoring," says Prof. Ibrahim Abdulhalim, head of the ElectroOptics Engineering Unit at BGU.

The catheter is being co-developed by Richard Azizkhan, M.D., surgeon-in-chief at Cincinnati Children's and the Lester W. Martin, chair of pediatric surgery. "Secondarily, this technology will reduce the need for repeated tests, thus reducing costs for the health system and society," Azizkhan noted.

Image Guided Needle Insertion Device -- This will combine sophisticated new imaging techniques with precise robotics to improve the accuracy of many medical procedures.

"Currently, a clinician has limited control over the path of a needle once inserted into the tissue and limited ability to know the precise trajectory required to achieve the desired needle position, often using trial and error even when guided by imaging modalities," says BGU Prof. Hugo Guterman of the Department of Electrical and Computer Engineering.

"The device substantially improves the accuracy for a number of invasive procedures while decreasing both the level of necessary expertise and the cost associated with current practice," adds Daniel von Allmen, M.D., director, Division of General and Thoracic Surgery at Cincinnati Children's. While initially targeting the pediatric market, this technology represents tremendous potential for the adult market as well.

Surfactant Delivery Device -- This innovative device consists of a delivery system for prolonged surfactant administration to premature babies' lungs, using nanoparticles. Current procedures do not allow for the sustained release of proteins or other complex particles in the alveoli of infants or adults. This technology would do just that, with the potential to deliver numerous therapies to the lower airway through a non-inflammatory delivery system. It is being developed by BGU's Prof. Joseph Kost and Jeffrey Whitsett, M.D., co-director, Perinatal Institute and chief, Section of Neonatology, Perinatal and Pulmonary Biology at Cincinnati Children's.

This collaboration is managed by CCHMC's Center for Technology Commercialization and BGU's technology commercialization company, BGN Technologies, Ltd. Cincinnati-based seed-stage investor CincyTech and Israel-based Ridgeback Business Development, Ltd. helped evaluate the projects. The CCHMC-BGU collaborative will seek new ideas and solutions for pediatric-specific medical devices from experts at both institutions for its next round of funding starting in January 2013.

###

American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision, creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. With some 20,000 students on campuses in Beer-Sheva, Sede Boqer and Eilat in Israel's southern desert, BGU is a university with a conscience, where the highest academic standards are integrated with community involvement, committed to sustainable development of the Negev. AABGU is headquartered in Manhattan and has nine regional offices throughout the U.S. For more information, please visit www.aabgu.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.